Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
5 |
+
from PIL import Image
|
6 |
+
import io
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
# โหลดโมเดลและ processor จาก Hugging Face
|
10 |
+
model_name = "Qwen/Qwen2-VL-7B-Instruct"
|
11 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
12 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
13 |
+
model_name,
|
14 |
+
torch_dtype=torch.bfloat16,
|
15 |
+
device_map="auto"
|
16 |
+
)
|
17 |
+
|
18 |
+
def extract_data_from_image(images):
|
19 |
+
results = []
|
20 |
+
|
21 |
+
for idx, img_file in enumerate(images):
|
22 |
+
try:
|
23 |
+
image = Image.open(io.BytesIO(img_file.read())).convert("RGB")
|
24 |
+
|
25 |
+
# Prompt บอกโมเดลว่าให้ทำอะไร
|
26 |
+
prompt = """
|
27 |
+
กรุณาสกัดข้อมูลสำคัญจากเอกสารนี้:
|
28 |
+
- วันที่
|
29 |
+
- ยอดรวม
|
30 |
+
- ชื่อร้านค้า
|
31 |
+
- เลขใบเสร็จ
|
32 |
+
|
33 |
+
กรุณาตอบในรูปแบบ JSON
|
34 |
+
"""
|
35 |
+
|
36 |
+
messages = [
|
37 |
+
{
|
38 |
+
"role": "user",
|
39 |
+
"content": [
|
40 |
+
{"type": "image"},
|
41 |
+
{"type": "text", "text": prompt}
|
42 |
+
]
|
43 |
+
}
|
44 |
+
]
|
45 |
+
|
46 |
+
text_prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
47 |
+
inputs = processor(text=text_prompt, images=image, return_tensors="pt").to(model.device).bfloat16()
|
48 |
+
|
49 |
+
with torch.no_grad():
|
50 |
+
generated_ids = model.generate(**inputs, max_new_tokens=512)
|
51 |
+
|
52 |
+
generated_ids_trimmed = [out_ids[len(inputs["input_ids"][0]):] for out_ids in generated_ids]
|
53 |
+
answer = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
54 |
+
|
55 |
+
try:
|
56 |
+
structured = eval(answer.replace("```json", "").replace("```", ""))
|
57 |
+
except:
|
58 |
+
structured = {"raw_response": answer}
|
59 |
+
|
60 |
+
results.append({
|
61 |
+
"file_name": img_file.name,
|
62 |
+
"data": str(structured),
|
63 |
+
"timestamp": datetime.now().isoformat()
|
64 |
+
})
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
results.append({
|
68 |
+
"file_name": img_file.name,
|
69 |
+
"data": f"เกิดข้อผิดพลาด: {str(e)}",
|
70 |
+
"timestamp": datetime.now().isoformat()
|
71 |
+
})
|
72 |
+
|
73 |
+
df = pd.DataFrame(results)
|
74 |
+
df["structured_data"] = df["data"].astype(str)
|
75 |
+
|
76 |
+
# บันทึกเป็น Parquet
|
77 |
+
parquet_path = "output.parquet"
|
78 |
+
df.to_parquet(parquet_path)
|
79 |
+
|
80 |
+
return {
|
81 |
+
"table": df[["file_name", "structured_data"]],
|
82 |
+
"download": parquet_path
|
83 |
+
}
|
84 |
+
|
85 |
+
# UI Components
|
86 |
+
title = "📄 ระบบสกัดข้อมูลเอกสารอัตโนมัติ (รองรับภาษาไทย)"
|
87 |
+
description = "อัปโหลดภาพหลายไฟล์ → สกัดข้อมูล → แยกหัวข้อ → บันทึกเป็น Parquet"
|
88 |
+
|
89 |
+
interface = gr.Interface(
|
90 |
+
fn=extract_data_from_image,
|
91 |
+
inputs=gr.File(type="file", file_types=["image"], multiple=True),
|
92 |
+
outputs=[
|
93 |
+
gr.Dataframe(label="ผลลัพธ์"),
|
94 |
+
gr.File(label="ดาวน์โหลด Parquet")
|
95 |
+
],
|
96 |
+
title=title,
|
97 |
+
description=description,
|
98 |
+
allow_flagging="never"
|
99 |
+
)
|
100 |
+
|
101 |
+
if __name__ == "__main__":
|
102 |
+
interface.launch()
|