import gradio as gr import pickle from PIL import Image from fastai.learner import load_learner model = load_learner('./mushrooms.pkl') categories = [ "Agaricus", "Amanita", "Boletus", "Cortinarius", "Entoloma", "Hygrocybe", "Lactarius", "Russula", "Suillus", ] def classify_image(image): prediction, _, probs = model.predict(image) return dict(zip(categories, map(float, probs))) iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs=gr.Label(), title="Image Classifier", description="WHAT IS THE MUSHROOM?" ) # Launch app if __name__ == "__main__": iface.launch()