provin commited on
Commit
c4e848c
·
verified ·
1 Parent(s): e8cad3e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +219 -34
app.py CHANGED
@@ -1,11 +1,175 @@
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -13,52 +177,73 @@ def respond(
13
  system_message,
14
  max_tokens,
15
  temperature,
16
- top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
 
 
 
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
53
  minimum=0.1,
54
  maximum=1.0,
55
- value=0.95,
56
  step=0.05,
57
  label="Top-p (nucleus sampling)",
58
  ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
 
64
  demo.launch()
 
1
+ import os
2
+ import re
3
+ import requests
4
  import gradio as gr
5
+ from bs4 import BeautifulSoup
6
+ import torch
7
 
8
+ # Hugging Face Transformers
9
+ from transformers import (
10
+ AutoTokenizer,
11
+ AutoModelForCausalLM,
12
+ Trainer,
13
+ TrainingArguments,
14
+ pipeline
15
+ )
16
+ from datasets import Dataset
17
+
18
+ # -----------------------------
19
+ # 1) SCRAPING (OPTIONAL)
20
+ # -----------------------------
21
+ BASE_URL = "https://www.cia.gov"
22
+ ARCHIVE_URL = "https://www.cia.gov/resources/csi/studies-in-intelligence/archives/operations-subject-index/"
23
+
24
+ def get_article_links():
25
+ """
26
+ Fetch the archive page and extract article links pointing to the CIA Studies in Intelligence.
27
+ """
28
+ response = requests.get(ARCHIVE_URL)
29
+ response.raise_for_status()
30
+ soup = BeautifulSoup(response.text, 'html.parser')
31
+
32
+ links = []
33
+ for a_tag in soup.find_all('a', href=True):
34
+ href = a_tag['href']
35
+ if "resources/csi/studies-in-intelligence" in href.lower():
36
+ # Convert relative links to absolute
37
+ if href.startswith("/"):
38
+ href = BASE_URL + href
39
+ links.append(href)
40
+
41
+ return list(set(links)) # remove duplicates
42
+
43
+ def scrape_article_text(url):
44
+ """
45
+ Fetch the article text from the URL if it's HTML.
46
+ (Skipping PDFs for demo.)
47
+ """
48
+ response = requests.get(url)
49
+ response.raise_for_status()
50
+ content_type = response.headers.get('Content-Type', '')
51
+ if 'application/pdf' in content_type.lower():
52
+ # Skip PDFs in this simple demo.
53
+ return None
54
+
55
+ soup = BeautifulSoup(response.text, 'html.parser')
56
+ paragraphs = soup.find_all('p')
57
+ article_text = "\n".join(p.get_text(strip=True) for p in paragraphs)
58
+ return article_text
59
+
60
+ def scrape_all_articles(article_links):
61
+ """
62
+ Iterate through all links and gather text into a dict {url: text}.
63
+ """
64
+ corpus_data = {}
65
+ for link in article_links:
66
+ text = scrape_article_text(link)
67
+ if text:
68
+ corpus_data[link] = text
69
+ return corpus_data
70
+
71
+ # -----------------------------
72
+ # 2) DATA CLEANING
73
+ # -----------------------------
74
+ import re
75
+
76
+ def clean_text(text):
77
+ # Simple cleaning: remove extra whitespace
78
+ text = re.sub(r'\s+', ' ', text)
79
+ text = text.strip()
80
+ return text
81
+
82
+ def prepare_dataset(corpus_data):
83
+ cleaned_texts = []
84
+ for url, text in corpus_data.items():
85
+ cleaned_texts.append(clean_text(text))
86
+ return cleaned_texts
87
+
88
+ # -----------------------------
89
+ # 3) FINE-TUNING (OPTIONAL)
90
+ # -----------------------------
91
+ def fine_tune_model(cleaned_texts, model_name="gpt2", output_dir="cia_agent_model"):
92
+ """
93
+ Fine-tunes GPT-2 on your CIA corpus.
94
+ Warning: resource-intensive! The free Hugging Face Spaces might time out.
95
+ """
96
+ ds = Dataset.from_dict({"text": cleaned_texts})
97
+
98
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
99
+ tokenizer.pad_token = tokenizer.eos_token # GPT-2 doesn't have a pad token
100
+
101
+ def tokenize_function(examples):
102
+ return tokenizer(
103
+ examples["text"],
104
+ truncation=True,
105
+ padding="max_length",
106
+ max_length=128
107
+ )
108
 
109
+ tokenized_ds = ds.map(tokenize_function, batched=True)
110
+
111
+ model = AutoModelForCausalLM.from_pretrained(model_name)
112
+
113
+ training_args = TrainingArguments(
114
+ output_dir=output_dir,
115
+ overwrite_output_dir=True,
116
+ num_train_epochs=1, # demonstration only
117
+ per_device_train_batch_size=1,
118
+ save_steps=100,
119
+ save_total_limit=1,
120
+ logging_steps=10,
121
+ evaluation_strategy="no", # or 'steps'
122
+ )
123
+
124
+ trainer = Trainer(
125
+ model=model,
126
+ args=training_args,
127
+ train_dataset=tokenized_ds,
128
+ )
129
+ trainer.train()
130
+
131
+ trainer.save_model(output_dir)
132
+ tokenizer.save_pretrained(output_dir)
133
+
134
+ return model, tokenizer
135
+
136
+ # -----------------------------
137
+ # 4) CIAgent INFERENCE
138
+ # -----------------------------
139
+ class CIAgent:
140
+ def __init__(self, model_path="cia_agent_model"):
141
+ """
142
+ Initialize a pipeline from a local fine-tuned model folder or fallback to GPT-2.
143
+ """
144
+ if not os.path.exists(model_path):
145
+ model_path = "gpt2"
146
+ self.generator = pipeline(
147
+ "text-generation",
148
+ model=model_path,
149
+ tokenizer=model_path
150
+ )
151
+ self.max_length = 128
152
+
153
+ def query(self, prompt, max_length=128, temperature=0.7, top_p=0.9):
154
+ """
155
+ Generate text from the model.
156
+ """
157
+ outputs = self.generator(
158
+ prompt,
159
+ max_length=max_length,
160
+ temperature=temperature,
161
+ top_p=top_p,
162
+ num_return_sequences=1
163
+ )
164
+ return outputs[0]["generated_text"]
165
+
166
+ # -----------------------------
167
+ # 5) GRADIO CHAT INTERFACE
168
+ # -----------------------------
169
+
170
+ # Create (or load) your CIAgent. In a real workflow, you might have already
171
+ # fine-tuned locally and just upload the "cia_agent_model" folder to your Space.
172
+ agent = CIAgent(model_path="cia_agent_model") # or "gpt2" if you haven't trained
173
 
174
  def respond(
175
  message,
 
177
  system_message,
178
  max_tokens,
179
  temperature,
180
+ top_p
181
  ):
182
+ """
183
+ This function is called by Gradio's ChatInterface. It receives:
184
+ - message: current user message
185
+ - history: list of (user_text, assistant_text) pairs
186
+ - system_message: the "system" instruction to guide the model
187
+ - max_tokens, temperature, top_p: generation parameters
 
 
 
188
 
189
+ We build a 'prompt' from all conversation turns + system message.
190
+ Then we query the CIAgent to get one text output.
191
+ Since CIAgent doesn't stream tokens by default, we yield once at the end.
192
+ """
193
+ # Build the conversation prompt
194
+ # For demonstration, we simply concatenate everything in a naive format.
195
+ # You could style it in a more advanced way for better context handling.
196
+ prompt = f"System: {system_message}\n\n"
197
+ for user_text, assistant_text in history:
198
+ if user_text:
199
+ prompt += f"User: {user_text}\n"
200
+ if assistant_text:
201
+ prompt += f"Assistant: {assistant_text}\n"
202
+ # Add the new user message
203
+ prompt += f"User: {message}\nAssistant: "
204
 
205
+ # Query the local CIAgent
206
+ response_text = agent.query(
207
+ prompt,
208
+ max_length=max_tokens,
209
  temperature=temperature,
210
+ top_p=top_p
211
+ )
 
212
 
213
+ # We can yield partial tokens if we want streaming, but the pipeline
214
+ # returns the entire text at once. Let's yield a single chunk:
215
+ yield response_text
216
 
217
+ # Create the ChatInterface
 
 
 
218
  demo = gr.ChatInterface(
219
+ fn=respond,
220
  additional_inputs=[
221
+ gr.Textbox(
222
+ value="You are a friendly Chatbot that knows about CIA Studies in Intelligence.",
223
+ label="System message"
224
+ ),
225
+ gr.Slider(minimum=1, maximum=2048, value=256, step=1, label="Max new tokens"),
226
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
227
  gr.Slider(
228
  minimum=0.1,
229
  maximum=1.0,
230
+ value=0.9,
231
  step=0.05,
232
  label="Top-p (nucleus sampling)",
233
  ),
234
  ],
235
  )
236
 
 
237
  if __name__ == "__main__":
238
+ # WARNING: Running scraping & fine-tuning on a free HF Space
239
+ # might exceed time/memory limits. If you do want to train, uncomment:
240
+ #
241
+ # article_links = get_article_links()
242
+ # corpus_data = scrape_all_articles(article_links)
243
+ # cleaned_texts = prepare_dataset(corpus_data)
244
+ # model, tokenizer = fine_tune_model(cleaned_texts)
245
+ #
246
+ # Then re-initialize agent = CIAgent("cia_agent_model")
247
+ #
248
+ # For now, just launch the Gradio chat using the existing or fallback GPT-2 model.
249
  demo.launch()