File size: 5,098 Bytes
281711d 1c33a6b 281711d 2982a51 281711d 8efd41a b20af37 b8be656 281711d 51aaefc 281711d 63bdadc 281711d b20af37 956b725 2982a51 30bf457 b41b751 30bf457 2982a51 956b725 1c33a6b e8b7916 1e4ed96 6736504 956b725 63bdadc 2a5d0b4 1ff7bc3 2982a51 b8be656 2982a51 82c5741 281711d 20a6e65 63bdadc 20a6e65 1ff7bc3 63bdadc 1e4ed96 63bdadc 20a6e65 d6d49d1 6736504 d6d49d1 6736504 d6d49d1 20a6e65 b8be656 20a6e65 b8be656 e8b7916 1c33a6b e8b7916 1e4ed96 e8b7916 1e4ed96 b8be656 82c5741 b8be656 1c33a6b b8be656 e8b7916 1c33a6b 82c5741 1c33a6b 6736504 1c33a6b d6d49d1 6736504 d6d49d1 281711d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import pathlib
from pathlib import Path
import tempfile
from typing import BinaryIO, Literal
import json
import pandas as pd
import gradio as gr
from datasets import load_dataset, Dataset
from huggingface_hub import upload_file, hf_hub_download
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from evaluation import evaluate_problem
from datetime import datetime
import os
from submit import submit_boundary
from about import PROBLEM_TYPES, TOKEN, CACHE_PATH, API, submissions_repo, results_repo
def read_boundary(filename):
local_path = hf_hub_download(
repo_id=submissions_repo,
repo_type="dataset",
filename=filename,
)
return local_path
def write_results(record, result):
record.update(result)
record['result_filename'] = record['submission_filename'].strip('.json') + '_results.json'
record['evaluated'] = True
if 'objectives' in record.keys():
record['objective'] = record.pop('objectives')
record['minimize_objective'] = True
with tempfile.NamedTemporaryFile(mode="w", suffix=".json", delete=False) as tmp:
json.dump(record, tmp, indent=2)
tmp.flush()
tmp_name = tmp.name
API.upload_file(
path_or_fileobj=tmp_name,
path_in_repo=record['result_filename'],
repo_id=results_repo,
repo_type="dataset",
commit_message=f"Add result data for {record['result_filename']}"
)
pathlib.Path(tmp_name).unlink()
return
def evaluate_boundary(filename):
local_path = read_boundary(filename)
with Path(local_path).open("r") as f:
raw = f.read()
data_dict = json.loads(raw)
result = evaluate_problem(data_dict['problem_type'], local_path)
write_results(data_dict, result)
return
def get_user(profile: gr.OAuthProfile | None) -> str:
if profile is None:
return "Please login to submit a boundary for evaluation."
return profile.username
def get_leaderboard():
ds = load_dataset(results_repo, split='train')
df = pd.DataFrame(ds)
score_field = "score" if "score" in df.columns else "objective" # fallback
df = df.sort_values(by=score_field, ascending=True)
return df
def show_output_box(message):
return gr.Textbox.update(value=message, visible=True)
def gradio_interface() -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem("Leaderboard", elem_id="boundary-benchmark-tab-table"):
gr.Markdown("# Boundary Design Leaderboard")
leaderboard_df = get_leaderboard()
Leaderboard(
value=leaderboard_df,
select_columns=["submission_time", "feasibility", "score", "objective", "user"],
search_columns=["submission_time", "score", "user"],
hide_columns=["result_filename", "submission_filename", "minimize_objective", "boundary_json", "evaluated"],
filter_columns=["problem_type", "submission_time"],
)
# def update_leaderboard(problem_type):
# return get_leaderboard(problem_type)
# leaderboard_type.change(fn=update_leaderboard, inputs=leaderboard_type, outputs=leaderboard_df)
with gr.TabItem("Submit", elem_id="boundary-benchmark-tab-table"):
gr.Markdown(
"""
# Plasma Boundary Evaluation Submission
Upload your plasma boundary JSON and select the problem type to get your score.
"""
)
user_state = gr.State(value=None)
filename = gr.State(value=None)
eval_state = gr.State(value=None)
gr.LoginButton()
demo.load(get_user, inputs=None, outputs=user_state)
with gr.Row():
problem_type = gr.Dropdown(PROBLEM_TYPES, label="Problem Type")
boundary_file = gr.File(label="Boundary JSON File (.json)")
boundary_file
message = gr.Textbox(label="Evaluation Result", lines=10, visible=False)
submit_btn = gr.Button("Evaluate")
submit_btn.click(
submit_boundary,
inputs=[problem_type, boundary_file, user_state],
outputs=[message, filename],
).then(
fn=show_output_box,
inputs=[message],
outputs=[message],
)
'''.then(
fn=evaluate_boundary,
inputs=[filename],
outputs=[eval_state]
)
.then(
fn=update_leaderboard,
inputs=[problem_type],
outputs=[leaderboard_df]
)'''
return demo
if __name__ == "__main__":
gradio_interface().launch()
|