File size: 4,555 Bytes
281711d 1c33a6b 281711d 2982a51 281711d 3e3ca09 b20af37 b8be656 281711d 51aaefc 281711d 63bdadc 50e75cf 04ba2d3 956b725 1c33a6b c6e6b77 1c33a6b c6e6b77 1c33a6b 0003044 1ae66e7 efa6cf8 0003044 63bdadc 2a5d0b4 be51a4e 9818d92 2982a51 b8be656 2982a51 82c5741 50e75cf 82c5741 281711d 20a6e65 0003044 2cdfab6 efa6cf8 9818d92 be51a4e 9818d92 be51a4e 2cdfab6 0003044 e1db249 3e3ca09 d6d49d1 20a6e65 b8be656 20a6e65 b8be656 e8b7916 1c33a6b e8b7916 1e4ed96 e8b7916 1e4ed96 b8be656 82c5741 b8be656 50e75cf b8be656 e8b7916 1c33a6b 82c5741 1c33a6b 3e3ca09 1c33a6b d6d49d1 281711d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import pathlib
from pathlib import Path
import tempfile
from typing import BinaryIO, Literal
import json
import pandas as pd
import gradio as gr
from datasets import load_dataset
from huggingface_hub import upload_file, hf_hub_download
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from evaluation import evaluate_problem
from datetime import datetime
import os
from submit import submit_boundary
from about import PROBLEM_TYPES, TOKEN, CACHE_PATH, API, submissions_repo, results_repo
from utils import read_boundary, write_results, get_user
from visualize import make_visual
def evaluate_boundary(filename):
print(filename)
local_path = read_boundary(filename)
with Path(local_path).open("r") as f:
raw = f.read()
data_dict = json.loads(raw)
result = evaluate_problem(data_dict['problem_type'], local_path)
# vis = make_visual(json.loads(data_dict['boundary_json']))
# data_dict['vis'] = vis
write_results(data_dict, result)
return
def make_clickable(name):
link =f'https://huggingface.co/{name}'
return f'[{name}]({link})'
# return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{name}</a>'
def get_leaderboard():
ds = load_dataset(results_repo, split='train')
df = pd.DataFrame(ds)
df.rename(columns={'submission_time': 'submission time', 'problem_type': 'problem type'}, inplace=True)
# df['user'] = df['user'].apply(lambda x: make_clickable(x)).astype(str)
score_field = "score" if "score" in df.columns else "objective" # fallback
df = df.sort_values(by=score_field, ascending=True)
return df
def show_output_box(message):
return gr.update(value=message, visible=True)
def gradio_interface() -> gr.Blocks:
with gr.Blocks() as demo:
with gr.Tabs(elem_classes="tab-buttons"):
with gr.TabItem("Leaderboard", elem_id="boundary-benchmark-tab-table"):
gr.Markdown("# Boundary Design Leaderboard")
Leaderboard(
value=get_leaderboard(),
datatype=['str', 'date', 'str', 'str', 'bool', 'markdown', 'number', 'bool', 'number', 'number', 'str'],
select_columns=["submission time", "feasibility", "score", "problem type", "user"],
search_columns=["submission time", "score", "user"],
hide_columns=["result_filename", "submission_filename", "objective", "minimize_objective", "boundary_json", "evaluated"],
filter_columns=["problem type"],
every=60,
render=True
)
with gr.TabItem("About", elem_id="boundary-benchmark-tab-table"):
gr.Markdown(
"""
# Welcome to the Fusion Challenge!
Upload your plasma boundary JSON and select the problem type to get your score.
"""
)
with gr.TabItem("Submit", elem_id="boundary-benchmark-tab-table"):
gr.Markdown(
"""
# Plasma Boundary Evaluation Submission
Upload your plasma boundary JSON and select the problem type to get your score.
"""
)
user_state = gr.State(value=None)
filename = gr.State(value=None)
eval_state = gr.State(value=None)
gr.LoginButton()
demo.load(get_user, inputs=None, outputs=user_state)
with gr.Row():
problem_type = gr.Dropdown(PROBLEM_TYPES, label="Problem Type")
boundary_file = gr.File(label="Boundary JSON File (.json)")
boundary_file
message = gr.Textbox(label="Submission Status", lines=3, visible=False)
submit_btn = gr.Button("Evaluate")
submit_btn.click(
submit_boundary,
inputs=[problem_type, boundary_file, user_state],
outputs=[message, filename],
).then(
fn=show_output_box,
inputs=[message],
outputs=[message],
).then(
fn=evaluate_boundary,
inputs=[filename],
outputs=[eval_state]
)
return demo
if __name__ == "__main__":
gradio_interface().launch()
|