File size: 7,430 Bytes
90a9dd3
 
 
 
a7169e0
 
 
90a9dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7169e0
90a9dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
import torch
from munch import Munch

from src.flair.functions import svd_operators as svd_op
from src.flair.functions import measurements
from src.flair.utils.inpaint_util import MaskGenerator

__DEGRADATION__ = {}

def register_degradation(name: str):
    def wrapper(fn):
        if __DEGRADATION__.get(name) is not None:
            raise NameError(f'DEGRADATION {name} is already registered')
        __DEGRADATION__[name]=fn
        return fn
    return wrapper

def get_degradation(name: str,
                    deg_config: Munch,
                    device:torch.device):
    if __DEGRADATION__.get(name) is None:
        raise NameError(f'DEGRADATION {name} does not exist.')
    return __DEGRADATION__[name](deg_config, device)

@register_degradation(name='cs_walshhadamard')
def deg_cs_walshhadamard(deg_config, device):
    compressed_size = round(1/deg_config.deg_scale)
    A_funcs = svd_op.WalshHadamardCS(deg_config.channels,
                                     deg_config.image_size,
                                     compressed_size,
                                     torch.randperm(deg_config.image_size**2),
                                     device)
    return A_funcs

@register_degradation(name='cs_blockbased')
def deg_cs_blockbased(deg_config, device):
    cs_ratio = deg_config.deg_scale
    A_funcs = svd_op.CS(deg_config.channels,
                        deg_config.image_size,
                        cs_ratio,
                        device)
    return A_funcs

@register_degradation(name='inpainting')
def deg_inpainting(deg_config, device):
    # TODO: generate mask rather than load
    loaded = np.load("exp/inp_masks/mask_768_half.npy")  # block
    # loaded = np.load("lip_mask_4.npy")
    mask = torch.from_numpy(loaded).to(device).reshape(-1)
    missing_r = torch.nonzero(mask == 0).long().reshape(-1) * 3
    missing_g = missing_r + 1
    missing_b = missing_g + 1
    missing = torch.cat([missing_r, missing_g, missing_b], dim=0)
    A_funcs = svd_op.Inpainting(deg_config.channels,
                                deg_config.image_size,
                                missing,
                                device)
    return A_funcs

@register_degradation(name='denoising')
def deg_denoise(deg_config, device):
    A_funcs = svd_op.Denoising(deg_config.channels,
                               deg_config.image_size,
                               device)
    return A_funcs

@register_degradation(name='colorization')
def deg_colorization(deg_config, device):
    A_funcs = svd_op.Colorization(deg_config.image_size,
                                  device)
    return A_funcs


@register_degradation(name='sr_avgpool')
def deg_sr_avgpool(deg_config, device):
    blur_by = int(deg_config.deg_scale)
    A_funcs = svd_op.SuperResolution(deg_config.channels,
                                     deg_config.image_size,
                                     blur_by,
                                     device)
    return A_funcs

@register_degradation(name='sr_bicubic')
def deg_sr_bicubic(deg_config, device):
    def bicubic_kernel(x, a=-0.5):
        if abs(x) <= 1:
            return (a + 2) * abs(x) ** 3 - (a + 3) * abs(x) ** 2 + 1
        elif 1 < abs(x) and abs(x) < 2:
            return a * abs(x) ** 3 - 5 * a * abs(x) ** 2 + 8 * a * abs(x) - 4 * a
        else:
            return 0

    factor = int(deg_config.deg_scale)
    k = np.zeros((factor * 4))
    for i in range(factor * 4):
        x = (1 / factor) * (i - np.floor(factor * 4 / 2) + 0.5)
        k[i] = bicubic_kernel(x)
    k = k / np.sum(k)
    kernel = torch.from_numpy(k).float().to(device)
    A_funcs = svd_op.SRConv(kernel / kernel.sum(),
                            deg_config.channels,
                            deg_config.image_size,
                            device,
                            stride=factor)
    return A_funcs

@register_degradation(name='deblur_uni')
def deg_deblur_uni(deg_config, device):
    A_funcs = svd_op.Deblurring(torch.tensor([1/deg_config.deg_scale]*deg_config.deg_scale).to(device),
                                deg_config.channels,
                                deg_config.image_size,
                                device)
    return A_funcs

@register_degradation(name='deblur_gauss')
def deg_deblur_gauss(deg_config, device):
    sigma = 3.0
    pdf = lambda x: torch.exp(torch.Tensor([-0.5 * (x / sigma) ** 2]))
    size = deg_config.deg_scale
    ker = []
    for k in range(-size//2, size//2):
        ker.append(pdf(k))
    kernel = torch.Tensor(ker).to(device)
    A_funcs = svd_op.Deblurring(kernel / kernel.sum(),
                                deg_config.channels,
                                deg_config.image_size,
                                device)
    return A_funcs

@register_degradation(name='deblur_aniso')
def deg_deblur_aniso(deg_config, device):
    sigma = 20
    pdf = lambda x: torch.exp(torch.Tensor([-0.5 * (x / sigma) ** 2]))
    kernel2 = torch.Tensor([pdf(-4), pdf(-3), pdf(-2), pdf(-1), pdf(0), pdf(1), pdf(2), pdf(3), pdf(4)]).to(device)

    sigma = 1
    pdf = lambda x: torch.exp(torch.Tensor([-0.5 * (x / sigma) ** 2]))
    kernel1 = torch.Tensor([pdf(-4), pdf(-3), pdf(-2), pdf(-1), pdf(0), pdf(1), pdf(2), pdf(3), pdf(4)]).to(device)

    A_funcs = svd_op.Deblurring2D(kernel1 / kernel1.sum(),
                                  kernel2 / kernel2.sum(),
                                  deg_config.channels,
                                  deg_config.image_size,
                                  device)
    return A_funcs

@register_degradation(name='deblur_motion')
def deg_deblur_motion(deg_config, device):
    A_funcs = measurements.MotionBlurOperator(
        kernel_size=deg_config.deg_scale,
        intensity=0.5,
        device=device
    )
    return A_funcs

@register_degradation(name='deblur_nonuniform')
def deg_deblur_motion(deg_config, device, kernels=None, masks=None):
    A_funcs = measurements.NonuniformBlurOperator(
        deg_config.image_size,
        deg_config.deg_scale,
        device,
        kernels=kernels,
        masks=masks,
    )
    return A_funcs


# ======= FOR arbitraty image size =======
@register_degradation(name='sr_avgpool_gen')
def deg_sr_avgpool_general(deg_config, device):
    blur_by = int(deg_config.deg_scale)
    A_funcs = svd_op.SuperResolutionGeneral(deg_config.channels,
                                            deg_config.imgH,
                                            deg_config.imgW,
                                            blur_by,
                                            device)
    return A_funcs

@register_degradation(name='deblur_gauss_gen')
def deg_deblur_guass_general(deg_config, device):
    A_funcs = measurements.GaussialBlurOperator(
        kernel_size=deg_config.deg_scale,
        intensity=3.0,
        device=device
    )
    return A_funcs


from src.flair.functions.jpeg import jpeg_encode, jpeg_decode

class JPEGOperator():
    def __init__(self, qf: int, device):
        self.qf = qf
        self.device = device

    def A(self, img):
        x_luma, x_chroma = jpeg_encode(img, self.qf)
        return x_luma, x_chroma

    def At(self, encoded):
        return jpeg_decode(encoded, self.qf)


@register_degradation(name='jpeg')
def deg_jpeg(deg_config, device):
    A_funcs = JPEGOperator(
        qf = deg_config.deg_scale,
        device=device
    )
    return A_funcs