File size: 13,257 Bytes
90a9dd3
 
 
 
 
 
 
 
a7169e0
 
90a9dd3
a7169e0
 
90a9dd3
 
 
a7169e0
90a9dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
'''This module handles task-dependent operations (A) and noises (n) to simulate a measurement y=Ax+n.'''

from abc import ABC, abstractmethod
from functools import partial

from torch.nn import functional as F
from torchvision import torch

from src.flair.utils.blur_util import Blurkernel
from src.flair.utils.img_util import fft2d
import numpy as np
from src.flair.utils.resizer import Resizer
from src.flair.utils.utils_sisr import pre_calculate_FK, pre_calculate_nonuniform
from torch.fft import fft2, ifft2


from src.flair.motionblur.motionblur import Kernel

# =================
# Operation classes
# =================

__OPERATOR__ = {}
_GAMMA_FACTOR = 2.2

def register_operator(name: str):
    def wrapper(cls):
        if __OPERATOR__.get(name, None):
            raise NameError(f"Name {name} is already registered!")
        __OPERATOR__[name] = cls
        return cls
    return wrapper


def get_operator(name: str, **kwargs):
    if __OPERATOR__.get(name, None) is None:
        raise NameError(f"Name {name} is not defined.")
    return __OPERATOR__[name](**kwargs)


class LinearOperator(ABC):
    @abstractmethod
    def forward(self, data, **kwargs):
        # calculate A * X
        pass

    @abstractmethod
    def noisy_forward(self, data, **kwargs):
        # calculate A * X + n
        pass

    @abstractmethod
    def transpose(self, data, **kwargs):
        # calculate A^T * X
        pass

    def ortho_project(self, data, **kwargs):
        # calculate (I - A^T * A)X
        return data - self.transpose(self.forward(data, **kwargs), **kwargs)

    def project(self, data, measurement, **kwargs):
        # calculate (I - A^T * A)Y - AX
        return self.ortho_project(measurement, **kwargs) - self.forward(data, **kwargs)


@register_operator(name='noise')
class DenoiseOperator(LinearOperator):
    def __init__(self, device):
        self.device = device

    def forward(self, data):
        return data

    def noisy_forward(self, data):
        return data

    def transpose(self, data):
        return data

    def ortho_project(self, data):
        return data

    def project(self, data):
        return data


@register_operator(name='sr_bicubic')
class SuperResolutionOperator(LinearOperator):
    def __init__(self,
                 in_shape,
                 scale_factor,
                 noise,
                 noise_scale,
                 device):
        self.device = device
        self.up_sample = partial(F.interpolate, scale_factor=scale_factor)
        self.down_sample = Resizer(in_shape, 1/scale_factor).to(device)
        self.noise = get_noise(name=noise, scale=noise_scale)

    def A(self, data, **kwargs):
        return self.forward(data, **kwargs)

    def forward(self, data, **kwargs):
        return self.down_sample(data)

    def noisy_forward(self, data, **kwargs):
        return self.noise.forward(self.down_sample(data))

    def transpose(self, data, **kwargs):
        return self.up_sample(data)

    def project(self, data, measurement, **kwargs):
        return data - self.transpose(self.forward(data)) + self.transpose(measurement)

@register_operator(name='deblur_motion')
class MotionBlurOperator(LinearOperator):
    def __init__(self,
                 kernel_size,
                 intensity,
                 device):
        self.device = device
        self.kernel_size = kernel_size
        self.conv = Blurkernel(blur_type='motion',
                               kernel_size=kernel_size,
                               std=intensity,
                               device=device).to(device)  # should we keep this device term?

        self.kernel_size =kernel_size
        self.intensity = intensity
        self.kernel = Kernel(size=(kernel_size, kernel_size), intensity=intensity)
        kernel = torch.tensor(self.kernel.kernelMatrix, dtype=torch.float32)
        self.conv.update_weights(kernel)

    def forward(self, data, **kwargs):
        # A^T * A
        return self.conv(data)

    def noisy_forward(self, data, **kwargs):
        pass

    def transpose(self, data, **kwargs):
        return data

    def change_kernel(self):
        self.kernel = Kernel(size=(self.kernel_size, self.kernel_size), intensity=self.intensity)
        kernel = torch.tensor(self.kernel.kernelMatrix, dtype=torch.float32)
        self.conv.update_weights(kernel)

    def get_kernel(self):
        kernel = self.kernel.kernelMatrix.type(torch.float32).to(self.device)
        return kernel.view(1, 1, self.kernel_size, self.kernel_size)

    def A(self, data):
        return self.forward(data)

    def At(self, data):
        return self.transpose(data)

@register_operator(name='deblur_gauss')
class GaussialBlurOperator(LinearOperator):
    def __init__(self,
                 kernel_size,
                 intensity,
                 device):
        self.device = device
        self.kernel_size = kernel_size
        self.conv = Blurkernel(blur_type='gaussian',
                               kernel_size=kernel_size,
                               std=intensity,
                               device=device).to(device)
        self.kernel = self.conv.get_kernel()
        self.conv.update_weights(self.kernel.type(torch.float32))

    def forward(self, data, **kwargs):
        return self.conv(data)

    def noisy_forward(self, data, **kwargs):
        pass

    def transpose(self, data, **kwargs):
        return data

    def get_kernel(self):
        return self.kernel.view(1, 1, self.kernel_size, self.kernel_size)

    def apply_kernel(self, data, kernel):
        self.conv.update_weights(kernel.type(torch.float32))
        return self.conv(data)

    def A(self, data):
        return self.forward(data)

    def At(self, data):
        return self.transpose(data)

@register_operator(name='inpainting')
class InpaintingOperator(LinearOperator):
    '''This operator get pre-defined mask and return masked image.'''
    def __init__(self,
                 noise,
                 noise_scale,
                 device):
        self.device = device
        self.noise = get_noise(name=noise, scale=noise_scale)

    def forward(self, data, **kwargs):
        try:
            return data * kwargs.get('mask', None).to(self.device)
        except:
            raise ValueError("Require mask")

    def noisy_forward(self, data, **kwargs):
        return self.noise.forward(self.forward(data, **kwargs))

    def transpose(self, data, **kwargs):
        return data

    def ortho_project(self, data, **kwargs):
        return data - self.forward(data, **kwargs)

# Operator for BlindDPS.
@register_operator(name='blind_blur')
class BlindBlurOperator(LinearOperator):
    def __init__(self, device, **kwargs) -> None:
        self.device = device

    def forward(self, data, kernel, **kwargs):
        return self.apply_kernel(data, kernel)

    def transpose(self, data, **kwargs):
        return data

    def apply_kernel(self, data, kernel):
        #TODO: faster way to apply conv?:W

        b_img = torch.zeros_like(data).to(self.device)
        for i in range(3):
            b_img[:, i, :, :] = F.conv2d(data[:, i:i+1, :, :], kernel, padding='same')
        return b_img


class NonLinearOperator(ABC):
    @abstractmethod
    def forward(self, data, **kwargs):
        pass

    @abstractmethod
    def noisy_forward(self, data, **kwargs):
        pass

    def project(self, data, measurement, **kwargs):
        return data + measurement - self.forward(data)

@register_operator(name='phase_retrieval')
class PhaseRetrievalOperator(NonLinearOperator):
    def __init__(self,
                 oversample,
                 noise,
                 noise_scale,
                 device):
        self.pad = int((oversample / 8.0) * 256)
        self.device = device
        self.noise = get_noise(name=noise, scale=noise_scale)

    def forward(self, data, **kwargs):
        padded = F.pad(data, (self.pad, self.pad, self.pad, self.pad))
        amplitude = fft2d(padded).abs()
        return amplitude

    def noisy_forard(self, data, **kwargs):
        return self.noise.forward(self.forward(data, **kwargs))

@register_operator(name='nonuniform_blur')
class NonuniformBlurOperator(LinearOperator):
    def __init__(self, in_shape, kernel_size, device,
                 kernels=None, masks=None):
        self.device = device
        self.kernel_size = kernel_size
        self.in_shape = in_shape

        # TODO: generalize
        if kernels is None and masks is None:
            self.kernels = np.load('./functions/nonuniform/kernels/000001.npy')
            self.masks = np.load('./functions/nonuniform/masks/000001.npy')
            self.kernels = torch.tensor(self.kernels).to(device)
            self.masks = torch.tensor(self.masks).to(device)

    # approximate in image space
    def forward_img(self, data):
        K = self.kernel_size
        data = F.pad(data, (K//2, K//2, K//2, K//2), mode="reflect")
        kernels = self.kernels.transpose(0, 1)
        data_rgb_batch = data.transpose(0, 1)
        conv_rgb_batch = F.conv2d(data_rgb_batch, kernels)
        y_rgb_batch = conv_rgb_batch * self.masks
        y_rgb_batch = torch.sum(y_rgb_batch, dim=1, keepdim=True)
        y = y_rgb_batch.transpose(0, 1)
        return y

    # NOTE: Only using this operator will make the problem nonlinear (gamma-correction)
    def forward_nonlinear(self, data, flatten=False, noiseless=False):
        # 1. Usual nonuniform blurring degradataion pipeline
        kernels = self.kernels.transpose(0, 1)
        FK, FKC = pre_calculate_FK(kernels)
        y = ifft2(FK * fft2(data)).real
        y = y.transpose(0, 1)
        y_rgb_batch = self.masks * y
        y_rgb_batch = torch.sum(y_rgb_batch, dim=1, keepdim=True)
        y = y_rgb_batch.transpose(0, 1)
        F2KM, FKFMy = pre_calculate_nonuniform(data, y, FK, FKC, self.masks)
        self.pre_calculated = (FK, FKC, F2KM, FKFMy)
        # 2. Gamma-correction
        y = (y + 1) / 2
        y = y ** (1 / _GAMMA_FACTOR)
        y = (y - 0.5) / 0.5
        return y

    def noisy_forward(self, data, **kwargs):
        return self.noise.forward(self.forward(data))

    # exact in Fourier
    def forward(self, data, flatten=False, noiseless=False):
        # [1, 25, 33, 33] -> [25, 1, 33, 33]
        kernels = self.kernels.transpose(0, 1)
        # [25, 1, 512, 512]
        FK, FKC = pre_calculate_FK(kernels)
        # [25, 3, 512, 512]
        y = ifft2(FK * fft2(data)).real
        # [3, 25, 512, 512]
        y = y.transpose(0, 1)
        y_rgb_batch = self.masks * y
        # [3, 1, 512, 512]
        y_rgb_batch = torch.sum(y_rgb_batch, dim=1, keepdim=True)
        # [1, 3, 512, 512]
        y = y_rgb_batch.transpose(0, 1)
        F2KM, FKFMy = pre_calculate_nonuniform(data, y, FK, FKC, self.masks)
        self.pre_calculated = (FK, FKC, F2KM, FKFMy)
        return y

    def transpose(self, y, flatten=False):
        kernels = self.kernels.transpose(0, 1)
        FK, FKC = pre_calculate_FK(kernels)
        # 1. braodcast and multiply
        # [3, 1, 512, 512]
        y_rgb_batch = y.transpose(0, 1)
        # [3, 25, 512, 512]
        y_rgb_batch = y_rgb_batch.repeat(1, 25, 1, 1)
        y = self.masks * y_rgb_batch
        # 2. transpose of convolution in Fourier
        # [25, 3, 512, 512]
        y = y.transpose(0, 1)
        ATy_broadcast = ifft2(FKC * fft2(y)).real
        # [1, 3, 512, 512]
        ATy = torch.sum(ATy_broadcast, dim=0, keepdim=True)
        return ATy

    def A(self, data):
        return self.forward(data)

    def At(self, data):
        return self.transpose(data)

# =============
# Noise classes
# =============


__NOISE__ = {}

def register_noise(name: str):
    def wrapper(cls):
        if __NOISE__.get(name, None):
            raise NameError(f"Name {name} is already defined!")
        __NOISE__[name] = cls
        return cls
    return wrapper

def get_noise(name: str, **kwargs):
    if __NOISE__.get(name, None) is None:
        raise NameError(f"Name {name} is not defined.")
    noiser = __NOISE__[name](**kwargs)
    noiser.__name__ = name
    return noiser

class Noise(ABC):
    def __call__(self, data):
        return self.forward(data)

    @abstractmethod
    def forward(self, data):
        pass

@register_noise(name='clean')
class Clean(Noise):
    def __init__(self, **kwargs):
        pass

    def forward(self, data):
        return data

@register_noise(name='gaussian')
class GaussianNoise(Noise):
    def __init__(self, scale):
        self.scale = scale

    def forward(self, data):
        return data + torch.randn_like(data, device=data.device) * self.scale


@register_noise(name='poisson')
class PoissonNoise(Noise):
    def __init__(self, scale):
        self.scale = scale

    def forward(self, data):
        '''
        Follow skimage.util.random_noise.
        '''

        # version 3 (stack-overflow)
        import numpy as np
        data = (data + 1.0) / 2.0
        data = data.clamp(0, 1)
        device = data.device
        data = data.detach().cpu()
        data = torch.from_numpy(np.random.poisson(data * 255.0 * self.scale) / 255.0 / self.scale)
        data = data * 2.0 - 1.0
        data = data.clamp(-1, 1)
        return data.to(device)