Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,138 Bytes
90a9dd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import random
from pathlib import Path
import os
import torch
from torchmetrics.functional.image import (
peak_signal_noise_ratio,
learned_perceptual_image_patch_similarity,
)
from PIL import Image
from skimage.color import rgb2lab, lab2rgb
import numpy as np
import cv2
from torchvision import transforms
RESAMPLE_MODE = Image.BICUBIC
def skip_iterator(iterator, skip):
for i, item in enumerate(iterator):
if i % skip == 0:
yield item
def generate_output_structure(output_dir, subfolders=[]):
"""
Generate a directory structure for the output. and return the paths to the subfolders. as template
"""
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
output_paths = []
for subfolder in subfolders:
output_paths.append(Path(os.path.join(output_dir, subfolder)))
(output_paths[-1]).mkdir(exist_ok=True, parents=True)
output_paths[-1] = os.path.join(output_paths[-1], "{}.png")
return output_paths
def find_files(path, ext="png"):
if os.path.isdir(path):
path = Path(path)
sorted_files = sorted(list(path.glob(f"*.{ext}")))
return sorted_files
else:
return [path]
def load_guidance_image(path, size=None):
"""
Load an image and convert it to a tensor.
Args: path to the image
returns: tensor of the image of shape (1, 3, H, W)
"""
img = Image.open(path)
img = img.convert("RGB")
tf = transforms.Compose([
transforms.Resize(size),
transforms.CenterCrop(size),
transforms.ToTensor()
])
img = tf(img) * 2 - 1
return img.unsqueeze(0)
def yield_images(path, ext="png", size=None):
files = find_files(path, ext)
for file in files:
yield load_guidance_image(file, size)
def yield_videos(paths, ext="png", H=None, W=None, n_frames=61):
for path in paths:
yield read_video(path, H, W, n_frames)
def read_video(path, H=None, W=None, n_frames=61) -> list[Image]:
path = Path(path)
frames = []
if Path(path).is_dir():
files = sorted(list(path.glob("*.png")))
for file in files[:n_frames]:
image = Image.open(file)
image.load()
if H is not None and W is not None:
image = image.resize((W, H), resample=Image.BICUBIC)
# to tensor
image = (
torch.tensor(np.array(image), dtype=torch.float32).permute(2, 0, 1)
/ 255.0
* 2
- 1
)
frames.append(image)
H, W = frames[0].size()[-2:]
frames = torch.stack(frames).unsqueeze(0)
return frames, (10, H, W)
capture = cv2.VideoCapture(str(path))
fps = capture.get(cv2.CAP_PROP_FPS)
while True:
success, frame = capture.read()
if not success:
break
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
if H is not None and W is not None:
frame = frame.resize((W, H), resample=Image.BICUBIC)
# to tensor
frame = (
torch.tensor(np.array(frame), dtype=torch.float32).permute(2, 0, 1)
/ 255.0
* 2
- 1
)
frames.append(frame)
capture.release()
# to torch
frames = torch.stack(frames).unsqueeze(0)
return frames, (fps, W, H)
def resize_video(
video: list[Image], width, height, resample_mode=RESAMPLE_MODE
) -> list[Image]:
frames_lr = []
for frame in video:
frame_lr = frame.resize((width, height), resample_mode)
frames_lr.append(frame_lr)
return frames_lr
def export_to_video(
video_frames,
output_video_path=None,
fps=8,
put_numbers=False,
annotations=None,
fourcc="mp4v",
):
fourcc = cv2.VideoWriter_fourcc(*fourcc) # codec
writer = cv2.VideoWriter(output_video_path, fourcc, fps, video_frames[0].size)
for i, frame in enumerate(video_frames):
frame = cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)
if put_numbers:
text_position = (frame.shape[1] - 60, 30)
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
font_color = (255, 255, 255)
line_type = 2
cv2.putText(
frame,
f"{i + 1}",
text_position,
font,
font_scale,
font_color,
line_type,
)
if annotations:
annotation = annotations[i]
frame = draw_bodypose(
frame, annotation["candidates"], annotation["subsets"]
)
writer.write(frame)
writer.release()
def export_images(frames: list[Image], dir_name):
dir_name = Path(dir_name)
dir_name.mkdir(exist_ok=True, parents=True)
for i, frame in enumerate(frames):
frame.save(dir_name / f"{i:05d}.png")
def vid2tensor(images: list[Image]) -> torch.Tensor:
# PIL to numpy
if not isinstance(images, list):
raise ValueError()
images = [np.array(image).astype(np.float32) / 255.0 for image in images]
images = np.stack(images, axis=0)
if images.ndim == 3:
# L mode, add luminance channel
images = np.expand_dims(images, -1)
# numpy to torch
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
return images
def compute_metrics(
source: list[Image],
output: list[Image],
output_lq: list[Image],
target: list[Image],
) -> dict:
psnr_ab = torch.tensor(
np.mean(compute_color_metrics(output, target)["psnr_ab"])
).float()
source = vid2tensor(source)
output = vid2tensor(output)
output_lq = vid2tensor(output_lq)
target = vid2tensor(target)
mse = ((output - target) ** 2).mean()
psnr = peak_signal_noise_ratio(output, target, data_range=1.0, dim=(1, 2, 3))
# lpips = learned_perceptual_image_patch_similarity(output, target)
mse_source = ((output_lq - source) ** 2).mean()
psnr_source = peak_signal_noise_ratio(
output_lq, source, data_range=1.0, dim=(1, 2, 3)
)
return {
"mse": mse.detach().cpu().item(),
"psnr": psnr.detach().cpu().item(),
"psnr_ab": psnr_ab.detach().cpu().item(),
"mse_source": mse_source.detach().cpu().item(),
"psnr_source": psnr_source.detach().cpu().item(),
}
def compute_psnr_ab(x, y_gt, pp_max=202.33542248):
"""Computes the PSNR of the ab color channels.
Note that the CIE-Lab space is asymmetric.
The maximum size for the 2 channels of the ab subspace is approximately 202.3354...
pp_max: Approximated maximum swing for the ab channels of the CIE-Lab color space
max_{x \in CIE-Lab} {x_a x_b} - min_{x \in CIE-Lab} {x_a x_b}
"""
assert (
len(x.shape) == 3
), f"Expecting data of the size HW2 but found {x.shape}; This should be a,b channels of CIE-Lab Space"
assert (
len(y_gt.shape) == 3
), f"Expecting data of the size HW2 but found {y_gt.shape}; This should be a,b channels of CIE-Lab Space"
assert (
x.shape == y_gt.shape
), f"Expecting data to have identical shape but found {y_gt.shape} != {x.shape}"
H, W, C = x.shape
assert (
C == 2
), f"This function assumes that both x & y are both the ab channels of the CIE-Lab Space"
MSE = np.sum((x - y_gt) ** 2) / (H * W * C) # C=2, two channels
MSE = np.clip(MSE, 1e-12, np.inf)
PSNR_ab = 10 * np.log10(pp_max**2) - 10 * np.log10(MSE)
return PSNR_ab
def compute_color_metrics(out: list[Image], target: list[Image]):
if len(out) != len(target):
raise ValueError("Videos do not have same length")
metrics = {"psnr_ab": []}
for out_frame, target_frame in zip(out, target):
out_frame, target_frame = np.asarray(out_frame), np.asarray(target_frame)
out_frame_lab, target_frame_lab = rgb2lab(out_frame), rgb2lab(target_frame)
psnr_ab = compute_psnr_ab(out_frame_lab[..., 1:3], target_frame_lab[..., 1:3])
metrics["psnr_ab"].append(psnr_ab.item())
return metrics
def to_device(sample, device):
result = {}
for key, val in sample.items():
if isinstance(val, torch.Tensor):
result[key] = val.to(device)
elif isinstance(val, list):
new_val = []
for e in val:
if isinstance(e, torch.Tensor):
new_val.append(e.to(device))
else:
new_val.append(val)
result[key] = new_val
else:
result[key] = val
return result
def seed_all(seed=42):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def adapt_unet(unet, lora_rank=None, in_conv_mode="zeros"):
# adapt conv_in
kernel = unet.conv_in.weight.data
if in_conv_mode == "zeros":
new_kernel = torch.zeros(320, 4, 3, 3, dtype=kernel.dtype, device=kernel.device)
elif in_conv_mode == "reflect":
new_kernel = kernel[:, 4:].clone()
else:
raise NotImplementedError
unet.conv_in.weight.data = torch.cat([kernel, new_kernel], dim=1)
if in_conv_mode == "reflect":
unet.conv_in.weight.data *= 2.0 / 3.0
unet.conv_in.in_channels = 12
if lora_rank is not None:
from peft import LoraConfig
types = (torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Linear, torch.nn.Embedding)
target_modules = [
(n, m) for n, m in unet.named_modules() if isinstance(m, types)
]
# identify parameters (not modules) that will not be lora'd
for _, m in target_modules:
m.requires_grad_(False)
not_adapted = [p for p in unet.parameters() if p.requires_grad]
unet_lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_rank,
init_lora_weights="gaussian",
# target_modules=["to_k", "to_q", "to_v", "to_out.0"],
target_modules=[n for n, _ in target_modules],
)
# the following line sets all parameters except the loras to non-trainable
unet.add_adapter(unet_lora_config)
unet.conv_in.requires_grad_()
for p in not_adapted:
p.requires_grad_()
def repeat_infinite(iterable):
def repeated():
while True:
yield from iterable
return repeated
class CPUAdam:
def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
self.params = list(params)
self.lr = lr
self.betas = betas
self.eps = eps
self.weight_decay = weight_decay
# keep this in main memory to save VRAM
self.state = {
param: {
"step": 0,
"exp_avg": torch.zeros_like(param, device="cpu"),
"exp_avg_sq": torch.zeros_like(param, device="cpu"),
}
for param in self.params
}
def step(self):
for param in self.params:
if param.grad is None:
continue
grad = param.grad.data.cpu()
if self.weight_decay != 0:
grad.add_(param.data, alpha=self.weight_decay)
state = self.state[param]
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = self.betas
state["step"] += 1
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = exp_avg_sq.sqrt().add_(self.eps)
step_size = (
self.lr
* (1 - beta2 ** state["step"]) ** 0.5
/ (1 - beta1 ** state["step"])
)
# param.data.add_((-step_size * (exp_avg / denom)).cuda())
param.data.addcdiv_(exp_avg.cuda(), denom.cuda(), value=-step_size)
def zero_grad(self):
for param in self.params:
param.grad = None
def state_dict(self):
return self.state
def set_lr(self, lr):
self.lr = lr
|