File size: 14,491 Bytes
90a9dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
import random
from pathlib import Path
import os
import torch
from torchmetrics.functional.image import (
    peak_signal_noise_ratio,
    learned_perceptual_image_patch_similarity,
)
from PIL import Image
from skimage.color import rgb2lab, lab2rgb
import numpy as np
import cv2
from torchvision import transforms


RESAMPLE_MODE = Image.BICUBIC

def load_captions_from_file(caption_file_path, user_prompt, skip=1):
    """Loads captions from a file, handling missing captions.

    Args:
        caption_file_path (str): Path to the caption file.
        user_prompt (str): The base prompt to prepend to captions.

    Returns:
        dict: A dictionary mapping filenames to captions.
    """
    captions = {}
    print(f"Loading captions from file: {caption_file_path}")
    try:
        with open(caption_file_path, "r") as f:
            for i, line in enumerate(f):
                if i % skip != 0:
                    continue
                line = line.strip()
                if not line: # Skip empty lines
                    continue
                parts = line.split(":", 1) # Split by colon only
                if len(parts) == 2:
                    filename, caption = parts
                    caption = caption.strip()
                    # Add user prompt only if caption is not empty, or always add it based on desired logic
                    # Current logic adds user_prompt regardless.
                    captions[filename] = user_prompt + " " + caption
                elif len(parts) == 1:
                    # Handle lines with filename but no caption after colon
                    filename = parts[0].strip()
                    if filename: # Check if filename is not empty
                        captions[filename] = user_prompt # Assign only user prompt
                        print(f"Warning: No caption found for {filename} in {caption_file_path}. Using user prompt only.")
                    else:
                        print(f"Warning: Skipping line with empty filename in {caption_file_path}: {line}")
                else:
                     # This case should ideally not happen with split(":", 1) unless the line is empty (handled above)
                     print(f"Warning: Skipping malformed line in {caption_file_path}: {line}")
    except FileNotFoundError:
        print(f"Error: Caption file not found: {caption_file_path}")
        # Depending on desired behavior, you might want to return an empty dict, 
        # raise an exception, or exit.
        # Returning empty dict for now.
        return {}
    except Exception as e:
        print(f"Error reading caption file {caption_file_path}: {e}")
        return {}
    return captions

def skip_iterator(iterator, skip):
    for i, item in enumerate(iterator):
        if i % skip == 0:
            yield item


def generate_output_structure(output_dir, subfolders=[]):
    """
    Generate a directory structure for the output. and return the paths to the subfolders. as template
    """
    output_dir = Path(output_dir)
    output_dir.mkdir(exist_ok=True, parents=True)
    output_paths = []
    for subfolder in subfolders:
        output_paths.append(Path(os.path.join(output_dir, subfolder)))
        (output_paths[-1]).mkdir(exist_ok=True, parents=True)
        output_paths[-1] = os.path.join(output_paths[-1], "{}.png")
    return output_paths


def find_files(path, ext="png"):
    if os.path.isdir(path):
        path = Path(path)
        sorted_files = sorted(list(path.glob(f"*.{ext}")))
        return sorted_files
    else:
        return [path]


def load_guidance_image(path, size=768):
    """
    Load an image and convert it to a tensor.
    Args: path to the image
    returns: tensor of the image of shape (1, 3, H, W)
    """
    img = Image.open(path)
    img = img.convert("RGB")
    tf = transforms.Compose([
    transforms.Resize(size),
    transforms.CenterCrop(size),
    transforms.ToTensor()
    ])
    img = tf(img) * 2 - 1
    return img.unsqueeze(0)


def yield_images(path, ext="png", size=None):
    files = find_files(path, ext)
    for file in files:
        yield load_guidance_image(file, size)


def yield_videos(paths, ext="png", H=None, W=None, n_frames=61):
    for path in paths:
        yield read_video(path, H, W, n_frames)


def read_video(path, H=None, W=None, n_frames=61) -> list[Image]:
    path = Path(path)
    frames = []

    if Path(path).is_dir():
        files = sorted(list(path.glob("*.png")))
        for file in files[:n_frames]:
            image = Image.open(file)
            image.load()
            if H is not None and W is not None:
                image = image.resize((W, H), resample=Image.BICUBIC)
            # to tensor
            image = (
                torch.tensor(np.array(image), dtype=torch.float32).permute(2, 0, 1)
                / 255.0
                * 2
                - 1
            )
            frames.append(image)
        H, W = frames[0].size()[-2:]
        frames = torch.stack(frames).unsqueeze(0)
        return frames, (10, H, W)

    capture = cv2.VideoCapture(str(path))
    fps = capture.get(cv2.CAP_PROP_FPS)

    while True:
        success, frame = capture.read()
        if not success:
            break

        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frame = Image.fromarray(frame)
        if H is not None and W is not None:
            frame = frame.resize((W, H), resample=Image.BICUBIC)
        # to tensor
        frame = (
            torch.tensor(np.array(frame), dtype=torch.float32).permute(2, 0, 1)
            / 255.0
            * 2
            - 1
        )
        frames.append(frame)

    capture.release()
    # to torch
    frames = torch.stack(frames).unsqueeze(0)
    return frames, (fps, W, H)


def resize_video(
    video: list[Image], width, height, resample_mode=RESAMPLE_MODE
) -> list[Image]:
    frames_lr = []
    for frame in video:
        frame_lr = frame.resize((width, height), resample_mode)
        frames_lr.append(frame_lr)
    return frames_lr


def export_to_video(
    video_frames,
    output_video_path=None,
    fps=8,
    put_numbers=False,
    annotations=None,
    fourcc="mp4v",
):
    fourcc = cv2.VideoWriter_fourcc(*fourcc)  # codec
    writer = cv2.VideoWriter(output_video_path, fourcc, fps, video_frames[0].size)
    for i, frame in enumerate(video_frames):
        frame = cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR)

        if put_numbers:
            text_position = (frame.shape[1] - 60, 30)
            font = cv2.FONT_HERSHEY_SIMPLEX
            font_scale = 1
            font_color = (255, 255, 255)
            line_type = 2
            cv2.putText(
                frame,
                f"{i + 1}",
                text_position,
                font,
                font_scale,
                font_color,
                line_type,
            )

        if annotations:
            annotation = annotations[i]
            frame = draw_bodypose(
                frame, annotation["candidates"], annotation["subsets"]
            )

        writer.write(frame)
    writer.release()


def export_images(frames: list[Image], dir_name):
    dir_name = Path(dir_name)
    dir_name.mkdir(exist_ok=True, parents=True)
    for i, frame in enumerate(frames):
        frame.save(dir_name / f"{i:05d}.png")


def vid2tensor(images: list[Image]) -> torch.Tensor:
    # PIL to numpy
    if not isinstance(images, list):
        raise ValueError()
    images = [np.array(image).astype(np.float32) / 255.0 for image in images]
    images = np.stack(images, axis=0)

    if images.ndim == 3:
        # L mode, add luminance channel
        images = np.expand_dims(images, -1)

    # numpy to torch
    images = torch.from_numpy(images.transpose(0, 3, 1, 2))
    return images


def compute_metrics(
    source: list[Image],
    output: list[Image],
    output_lq: list[Image],
    target: list[Image],
) -> dict:
    psnr_ab = torch.tensor(
        np.mean(compute_color_metrics(output, target)["psnr_ab"])
    ).float()

    source = vid2tensor(source)
    output = vid2tensor(output)
    output_lq = vid2tensor(output_lq)
    target = vid2tensor(target)

    mse = ((output - target) ** 2).mean()
    psnr = peak_signal_noise_ratio(output, target, data_range=1.0, dim=(1, 2, 3))
    # lpips = learned_perceptual_image_patch_similarity(output, target)

    mse_source = ((output_lq - source) ** 2).mean()
    psnr_source = peak_signal_noise_ratio(
        output_lq, source, data_range=1.0, dim=(1, 2, 3)
    )

    return {
        "mse": mse.detach().cpu().item(),
        "psnr": psnr.detach().cpu().item(),
        "psnr_ab": psnr_ab.detach().cpu().item(),
        "mse_source": mse_source.detach().cpu().item(),
        "psnr_source": psnr_source.detach().cpu().item(),
    }


def compute_psnr_ab(x, y_gt, pp_max=202.33542248):
    """Computes the PSNR of the ab color channels.

    Note that the CIE-Lab space is asymmetric.
    The maximum size for the 2 channels of the ab subspace is approximately 202.3354...
    pp_max: Approximated maximum swing for the ab channels of the CIE-Lab color space
        max_{x \in CIE-Lab} {x_a x_b} - min_{x \in CIE-Lab} {x_a x_b}
    """
    assert (
        len(x.shape) == 3
    ), f"Expecting data of the size HW2 but found {x.shape}; This should be a,b channels of CIE-Lab Space"
    assert (
        len(y_gt.shape) == 3
    ), f"Expecting data of the size HW2 but found {y_gt.shape}; This should be a,b channels of CIE-Lab Space"
    assert (
        x.shape == y_gt.shape
    ), f"Expecting data to have identical shape but found {y_gt.shape} != {x.shape}"

    H, W, C = x.shape
    assert (
        C == 2
    ), f"This function assumes that both x & y are both the ab channels of the CIE-Lab Space"

    MSE = np.sum((x - y_gt) ** 2) / (H * W * C)  # C=2, two channels
    MSE = np.clip(MSE, 1e-12, np.inf)

    PSNR_ab = 10 * np.log10(pp_max**2) - 10 * np.log10(MSE)

    return PSNR_ab


def compute_color_metrics(out: list[Image], target: list[Image]):
    if len(out) != len(target):
        raise ValueError("Videos do not have same length")

    metrics = {"psnr_ab": []}

    for out_frame, target_frame in zip(out, target):
        out_frame, target_frame = np.asarray(out_frame), np.asarray(target_frame)
        out_frame_lab, target_frame_lab = rgb2lab(out_frame), rgb2lab(target_frame)

        psnr_ab = compute_psnr_ab(out_frame_lab[..., 1:3], target_frame_lab[..., 1:3])
        metrics["psnr_ab"].append(psnr_ab.item())

    return metrics


def to_device(sample, device):
    result = {}
    for key, val in sample.items():
        if isinstance(val, torch.Tensor):
            result[key] = val.to(device)
        elif isinstance(val, list):
            new_val = []
            for e in val:
                if isinstance(e, torch.Tensor):
                    new_val.append(e.to(device))
                else:
                    new_val.append(val)
            result[key] = new_val
        else:
            result[key] = val
    return result


def seed_all(seed=42):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)


def adapt_unet(unet, lora_rank=None, in_conv_mode="zeros"):
    # adapt conv_in
    kernel = unet.conv_in.weight.data
    if in_conv_mode == "zeros":
        new_kernel = torch.zeros(320, 4, 3, 3, dtype=kernel.dtype, device=kernel.device)
    elif in_conv_mode == "reflect":
        new_kernel = kernel[:, 4:].clone()
    else:
        raise NotImplementedError
    unet.conv_in.weight.data = torch.cat([kernel, new_kernel], dim=1)
    if in_conv_mode == "reflect":
        unet.conv_in.weight.data *= 2.0 / 3.0
    unet.conv_in.in_channels = 12

    if lora_rank is not None:
        from peft import LoraConfig

        types = (torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Linear, torch.nn.Embedding)
        target_modules = [
            (n, m) for n, m in unet.named_modules() if isinstance(m, types)
        ]
        # identify parameters (not modules) that will not be lora'd
        for _, m in target_modules:
            m.requires_grad_(False)
        not_adapted = [p for p in unet.parameters() if p.requires_grad]

        unet_lora_config = LoraConfig(
            r=lora_rank,
            lora_alpha=lora_rank,
            init_lora_weights="gaussian",
            # target_modules=["to_k", "to_q", "to_v", "to_out.0"],
            target_modules=[n for n, _ in target_modules],
        )
        # the following line sets all parameters except the loras to non-trainable
        unet.add_adapter(unet_lora_config)

        unet.conv_in.requires_grad_()
        for p in not_adapted:
            p.requires_grad_()


def repeat_infinite(iterable):
    def repeated():
        while True:
            yield from iterable

    return repeated


class CPUAdam:
    def __init__(self, params, lr=0.001, betas=(0.9, 0.999), eps=1e-8, weight_decay=0):
        self.params = list(params)
        self.lr = lr
        self.betas = betas
        self.eps = eps
        self.weight_decay = weight_decay
        # keep this in main memory to save VRAM
        self.state = {
            param: {
                "step": 0,
                "exp_avg": torch.zeros_like(param, device="cpu"),
                "exp_avg_sq": torch.zeros_like(param, device="cpu"),
            }
            for param in self.params
        }

    def step(self):
        for param in self.params:
            if param.grad is None:
                continue

            grad = param.grad.data.cpu()
            if self.weight_decay != 0:
                grad.add_(param.data, alpha=self.weight_decay)

            state = self.state[param]
            exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
            beta1, beta2 = self.betas

            state["step"] += 1

            exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
            exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

            denom = exp_avg_sq.sqrt().add_(self.eps)

            step_size = (
                self.lr
                * (1 - beta2 ** state["step"]) ** 0.5
                / (1 - beta1 ** state["step"])
            )

            # param.data.add_((-step_size * (exp_avg / denom)).cuda())

            param.data.addcdiv_(exp_avg.cuda(), denom.cuda(), value=-step_size)

    def zero_grad(self):
        for param in self.params:
            param.grad = None

    def state_dict(self):
        return self.state

    def set_lr(self, lr):
        self.lr = lr