Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,183 Bytes
90a9dd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
""" From https://github.com/LeviBorodenko/motionblur """
import numpy as np
from PIL import Image, ImageDraw, ImageFilter
from numpy.random import uniform, triangular, beta
from math import pi
from pathlib import Path
from scipy.signal import convolve
# tiny error used for nummerical stability
eps = 0.1
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
def norm(lst: list) -> float:
"""[summary]
L^2 norm of a list
[description]
Used for internals
Arguments:
lst {list} -- vector
"""
if not isinstance(lst, list):
raise ValueError("Norm takes a list as its argument")
if lst == []:
return 0
return (sum((i**2 for i in lst)))**0.5
def polar2z(r: np.ndarray, θ: np.ndarray) -> np.ndarray:
"""[summary]
Takes a list of radii and angles (radians) and
converts them into a corresponding list of complex
numbers x + yi.
[description]
Arguments:
r {np.ndarray} -- radius
θ {np.ndarray} -- angle
Returns:
[np.ndarray] -- list of complex numbers r e^(i theta) as x + iy
"""
return r * np.exp(1j * θ)
class Kernel(object):
"""[summary]
Class representing a motion blur kernel of a given intensity.
[description]
Keyword Arguments:
size {tuple} -- Size of the kernel in px times px
(default: {(100, 100)})
intensity {float} -- Float between 0 and 1.
Intensity of the motion blur.
: 0 means linear motion blur and 1 is a highly non linear
and often convex motion blur path. (default: {0})
Attribute:
kernelMatrix -- Numpy matrix of the kernel of given intensity
Properties:
applyTo -- Applies kernel to image
(pass as path, pillow image or np array)
Raises:
ValueError
"""
def __init__(self, size: tuple = (100, 100), intensity: float=0):
# checking if size is correctly given
if not isinstance(size, tuple):
raise ValueError("Size must be TUPLE of 2 positive integers")
elif len(size) != 2 or type(size[0]) != type(size[1]) != int:
raise ValueError("Size must be tuple of 2 positive INTEGERS")
elif size[0] < 0 or size[1] < 0:
raise ValueError("Size must be tuple of 2 POSITIVE integers")
# check if intensity is float (int) between 0 and 1
if type(intensity) not in [int, float, np.float32, np.float64]:
raise ValueError("Intensity must be a number between 0 and 1")
elif intensity < 0 or intensity > 1:
raise ValueError("Intensity must be a number between 0 and 1")
# saving args
self.SIZE = size
self.INTENSITY = intensity
# deriving quantities
# we super size first and then downscale at the end for better
# anti-aliasing
self.SIZEx2 = tuple([2 * i for i in size])
self.x, self.y = self.SIZEx2
# getting length of kernel diagonal
self.DIAGONAL = (self.x**2 + self.y**2)**0.5
# flag to see if kernel has been calculated already
self.kernel_is_generated = False
def _createPath(self):
"""[summary]
creates a motion blur path with the given intensity.
[description]
Proceede in 5 steps
1. Get a random number of random step sizes
2. For each step get a random angle
3. combine steps and angles into a sequence of increments
4. create path out of increments
5. translate path to fit the kernel dimensions
NOTE: "random" means random but might depend on the given intensity
"""
# first we find the lengths of the motion blur steps
def getSteps():
"""[summary]
Here we calculate the length of the steps taken by
the motion blur
[description]
We want a higher intensity lead to a longer total motion
blur path and more different steps along the way.
Hence we sample
MAX_PATH_LEN =[U(0,1) + U(0, intensity^2)] * diagonal * 0.75
and each step: beta(1, 30) * (1 - self.INTENSITY + eps) * diagonal)
"""
# getting max length of blur motion
self.MAX_PATH_LEN = 0.75 * self.DIAGONAL * \
(uniform() + uniform(0, self.INTENSITY**2))
# getting step
steps = []
while sum(steps) < self.MAX_PATH_LEN:
# sample next step
step = beta(1, 30) * (1 - self.INTENSITY + eps) * self.DIAGONAL
if step < self.MAX_PATH_LEN:
steps.append(step)
# note the steps and the total number of steps
self.NUM_STEPS = len(steps)
self.STEPS = np.asarray(steps)
def getAngles():
"""[summary]
Gets an angle for each step
[description]
The maximal angle should be larger the more
intense the motion is. So we sample it from a
U(0, intensity * pi)
We sample "jitter" from a beta(2,20) which is the probability
that the next angle has a different sign than the previous one.
"""
# same as with the steps
# first we get the max angle in radians
self.MAX_ANGLE = uniform(0, self.INTENSITY * pi)
# now we sample "jitter" which is the probability that the
# next angle has a different sign than the previous one
self.JITTER = beta(2, 20)
# initialising angles (and sign of angle)
angles = [uniform(low=-self.MAX_ANGLE, high=self.MAX_ANGLE)]
while len(angles) < self.NUM_STEPS:
# sample next angle (absolute value)
angle = triangular(0, self.INTENSITY *
self.MAX_ANGLE, self.MAX_ANGLE + eps)
# with jitter probability change sign wrt previous angle
if uniform() < self.JITTER:
angle *= - np.sign(angles[-1])
else:
angle *= np.sign(angles[-1])
angles.append(angle)
# save angles
self.ANGLES = np.asarray(angles)
# Get steps and angles
getSteps()
getAngles()
# Turn them into a path
####
# we turn angles and steps into complex numbers
complex_increments = polar2z(self.STEPS, self.ANGLES)
# generate path as the cumsum of these increments
self.path_complex = np.cumsum(complex_increments)
# find center of mass of path
self.com_complex = sum(self.path_complex) / self.NUM_STEPS
# Shift path s.t. center of mass lies in the middle of
# the kernel and a apply a random rotation
###
# center it on COM
center_of_kernel = (self.x + 1j * self.y) / 2
self.path_complex -= self.com_complex
# randomly rotate path by an angle a in (0, pi)
self.path_complex *= np.exp(1j * uniform(0, pi))
# center COM on center of kernel
self.path_complex += center_of_kernel
# convert complex path to final list of coordinate tuples
self.path = [(i.real, i.imag) for i in self.path_complex]
def _createKernel(self, save_to: Path=None, show: bool=False):
"""[summary]
Finds a kernel (psf) of given intensity.
[description]
use displayKernel to actually see the kernel.
Keyword Arguments:
save_to {Path} -- Image file to save the kernel to. {None}
show {bool} -- shows kernel if true
"""
# check if we haven't already generated a kernel
if self.kernel_is_generated:
return None
# get the path
self._createPath()
# Initialise an image with super-sized dimensions
# (pillow Image object)
self.kernel_image = Image.new("RGB", self.SIZEx2)
# ImageDraw instance that is linked to the kernel image that
# we can use to draw on our kernel_image
self.painter = ImageDraw.Draw(self.kernel_image)
# draw the path
self.painter.line(xy=self.path, width=int(self.DIAGONAL / 150))
# applying gaussian blur for realism
self.kernel_image = self.kernel_image.filter(
ImageFilter.GaussianBlur(radius=int(self.DIAGONAL * 0.01)))
# Resize to actual size
self.kernel_image = self.kernel_image.resize(
self.SIZE, resample=Image.LANCZOS)
# convert to gray scale
self.kernel_image = self.kernel_image.convert("L")
# flag that we have generated a kernel
self.kernel_is_generated = True
def displayKernel(self, save_to: Path=None, show: bool=True):
"""[summary]
Finds a kernel (psf) of given intensity.
[description]
Saves the kernel to save_to if needed or shows it
is show true
Keyword Arguments:
save_to {Path} -- Image file to save the kernel to. {None}
show {bool} -- shows kernel if true
"""
# generate kernel if needed
self._createKernel()
# save if needed
if save_to is not None:
save_to_file = Path(save_to)
# save Kernel image
self.kernel_image.save(save_to_file)
else:
# Show kernel
self.kernel_image.show()
@property
def kernelMatrix(self) -> np.ndarray:
"""[summary]
Kernel matrix of motion blur of given intensity.
[description]
Once generated, it stays the same.
Returns:
numpy ndarray
"""
# generate kernel if needed
self._createKernel()
kernel = np.asarray(self.kernel_image, dtype=np.float32)
kernel /= np.sum(kernel)
return kernel
@kernelMatrix.setter
def kernelMatrix(self, *kargs):
raise NotImplementedError("Can't manually set kernel matrix yet")
def applyTo(self, image, keep_image_dim: bool = False) -> Image:
"""[summary]
Applies kernel to one of the following:
1. Path to image file
2. Pillow image object
3. (H,W,3)-shaped numpy array
[description]
Arguments:
image {[str, Path, Image, np.ndarray]}
keep_image_dim {bool} -- If true, then we will
conserve the image dimension after blurring
by using "same" convolution instead of "valid"
convolution inside the scipy convolve function.
Returns:
Image -- [description]
"""
# calculate kernel if haven't already
self._createKernel()
def applyToPIL(image: Image, keep_image_dim: bool = False) -> Image:
"""[summary]
Applies the kernel to an PIL.Image instance
[description]
converts to RGB and applies the kernel to each
band before recombining them.
Arguments:
image {Image} -- Image to convolve
keep_image_dim {bool} -- If true, then we will
conserve the image dimension after blurring
by using "same" convolution instead of "valid"
convolution inside the scipy convolve function.
Returns:
Image -- blurred image
"""
# convert to RGB
image = image.convert(mode="RGB")
conv_mode = "valid"
if keep_image_dim:
conv_mode = "same"
result_bands = ()
for band in image.split():
# convolve each band individually with kernel
result_band = convolve(
band, self.kernelMatrix, mode=conv_mode).astype("uint8")
# collect bands
result_bands += result_band,
# stack bands back together
result = np.dstack(result_bands)
# Get image
return Image.fromarray(result)
# If image is Path
if isinstance(image, str) or isinstance(image, Path):
# open image as Image class
image_path = Path(image)
image = Image.open(image_path)
return applyToPIL(image, keep_image_dim)
elif isinstance(image, Image.Image):
# apply kernel
return applyToPIL(image, keep_image_dim)
elif isinstance(image, np.ndarray):
# ASSUMES we have an array of the form (H, W, 3)
###
# initiate Image object from array
image = Image.fromarray(image)
return applyToPIL(image, keep_image_dim)
else:
raise ValueError("Cannot apply kernel to this type.")
if __name__ == '__main__':
image = Image.open("./images/moon.png")
image.show()
k = Kernel()
k.applyTo(image, keep_image_dim=True).show()
|