File size: 4,910 Bytes
90a9dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# -*- coding: utf-8 -*-
import torch.fft
import torch

import numpy as np
from scipy import ndimage
from scipy.interpolate import interp2d

def splits(a, sf):
    '''split a into sfxsf distinct blocks
    Args:
        a: NxCxWxH
        sf: split factor
    Returns:
        b: NxCx(W/sf)x(H/sf)x(sf^2)
    '''
    b = torch.stack(torch.chunk(a, sf, dim=2), dim=4)
    b = torch.cat(torch.chunk(b, sf, dim=3), dim=4)
    return b


def p2o(psf, shape):
    '''
    Convert point-spread function to optical transfer function.
    otf = p2o(psf) computes the Fast Fourier Transform (FFT) of the
    point-spread function (PSF) array and creates the optical transfer
    function (OTF) array that is not influenced by the PSF off-centering.
    Args:
        psf: NxCxhxw
        shape: [H, W]
    Returns:
        otf: NxCxHxWx2
    '''
    otf = torch.zeros(psf.shape[:-2] + shape).type_as(psf)
    otf[...,:psf.shape[2],:psf.shape[3]].copy_(psf)
    for axis, axis_size in enumerate(psf.shape[2:]):
        otf = torch.roll(otf, -int(axis_size / 2), dims=axis+2)
    otf = torch.fft.fftn(otf, dim=(-2,-1))
    #n_ops = torch.sum(torch.tensor(psf.shape).type_as(psf) * torch.log2(torch.tensor(psf.shape).type_as(psf)))
    #otf[..., 1][torch.abs(otf[..., 1]) < n_ops*2.22e-16] = torch.tensor(0).type_as(psf)
    return otf


def upsample(x, sf=3):
    '''s-fold upsampler
    Upsampling the spatial size by filling the new entries with zeros
    x: tensor image, NxCxWxH
    '''
    st = 0
    z = torch.zeros((x.shape[0], x.shape[1], x.shape[2]*sf, x.shape[3]*sf)).type_as(x)
    z[..., st::sf, st::sf].copy_(x)
    return z


def downsample(x, sf=3):
    '''s-fold downsampler
    Keeping the upper-left pixel for each distinct sfxsf patch and discarding the others
    x: tensor image, NxCxWxH
    '''
    st = 0
    return x[..., st::sf, st::sf]


def data_solution_simple(x, F2K, FKFy, rho):
    rho = rho.clip(min=1e-2)
    numerator = FKFy + torch.fft.fftn(rho*x, dim=(-2,-1))
    denominator = F2K + rho
    FX = numerator / denominator
    Xest = torch.real(torch.fft.ifftn(FX, dim=(-2, -1)))
    return Xest


def data_solution_nonuniform(x, FK, FKC, F2KM, FKFMy, rho):
    rho = rho.clip(min=1e-2)
    numerator = FKFMy + torch.fft.fftn(rho*x, dim=(-2,-1))
    denominator = F2KM + rho
    FX = numerator / denominator
    Xest = torch.real(torch.fft.ifftn(FX, dim=(-2, -1)))
    return Xest


def pre_calculate(x, k):
    '''
    Args:
        x: NxCxHxW, LR input
        k: NxCxhxw

    Returns:
        FK, FKC, F2K
        will be reused during iterations
    '''
    w, h = x.shape[-2:]
    FK = p2o(k, (w, h))
    FKC = torch.conj(FK)
    F2K = torch.pow(torch.abs(FK), 2)
    return FK, FKC, F2K


def pre_calculate_FK(k):
    '''
    Args:
        k: [25, 1, 33, 33] 25 is the number of filters

    Returns:
        FK:
        FKC:
    '''
    # [25, 1, 512, 512] (expanded from) [25, 1, 33, 33]
    FK = p2o(k, (512, 512))
    FKC = torch.conj(FK)
    return FK, FKC


def pre_calculate_nonuniform(x, y, FK, FKC, mask):
    '''
    Args:
        x: [1, 3, 512, 512]
        y: [1, 3, 512, 512]
        FK: [25, 1, 512, 512] 25 is the number of filters
        FKC: [25, 1, 512, 512]
        m: [1, 25, 512, 512]

    Returns:
    '''
    mask = mask.transpose(0, 1)
    w, h = x.shape[-2:]
    # [1, 3, 512, 512] -> [25, 3, 512, 512]
    By = y.repeat(mask.shape[0], 1, 1, 1)
    # [25, 3, 512, 512]
    My = mask * By
    # or use just fft..?
    FMy = torch.fft.fft2(My)
    
    # [25, 3, 512, 512]
    FKFMy = FK * FMy
    # [1, 3, 512, 512]
    FKFMy = torch.sum(FKFMy, dim=0, keepdim=True)
    
    # [25, 1, 512, 512]
    F2KM = torch.abs(FKC * (mask ** 2) * FK)
    # [1, 1, 512, 512]
    F2KM = torch.sum(F2KM, dim=0, keepdim=True)
    return F2KM, FKFMy


def classical_degradation(x, k, sf=3):
    ''' blur + downsampling

    Args:
        x: HxWxC image, [0, 1]/[0, 255]
        k: hxw, double
        sf: down-scale factor

    Return:
        downsampled LR image
    '''
    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
    #x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
    st = 0
    return x[st::sf, st::sf, ...]



def shift_pixel(x, sf, upper_left=True):
    """shift pixel for super-resolution with different scale factors
    Args:
        x: WxHxC or WxH, image or kernel
        sf: scale factor
        upper_left: shift direction
    """
    h, w = x.shape[:2]
    shift = (sf-1)*0.5
    xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
    if upper_left:
        x1 = xv + shift
        y1 = yv + shift
    else:
        x1 = xv - shift
        y1 = yv - shift

    x1 = np.clip(x1, 0, w-1)
    y1 = np.clip(y1, 0, h-1)

    if x.ndim == 2:
        x = interp2d(xv, yv, x)(x1, y1)
    if x.ndim == 3:
        for i in range(x.shape[-1]):
            x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)

    return x