File size: 6,169 Bytes
75c46c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify 
import cv2
import numpy as np
from unstructured.partition.pdf import partition_pdf
import json, base64, io, os
from PIL import Image, ImageEnhance, ImageDraw
from imutils.perspective import four_point_transform
from dotenv import load_dotenv
import pytesseract
from transformers import AutoProcessor, AutoModelForImageTextToText
from langchain_community.document_loaders.image_captions import ImageCaptionLoader

app = Flask(__name__)

pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
poppler_path=r"C:\poppler-23.11.0\Library\bin"

count = 0
PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"

OUTPUT_FOLDER = "OUTPUTS"
DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER,"DETECTED_IMAGE")
IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")

for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
    os.makedirs(path, exist_ok=True)

# Model Initialization
smolvlm256m_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct")
smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")

# SmolVLM Image Captioning functioning
def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
    # Ensure exactly one <image> token
    if "<image>" not in prompt:
        prompt = f"<image> {prompt.strip()}" 
    
    num_image_tokens = prompt.count("<image>")
    if num_image_tokens != 1:
        raise ValueError(f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
    
    inputs = smolvlm256m_processor(images=[image], text=[prompt], return_tensors="pt").to("cpu")
    output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
    return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)

# --- FUNCTION: Extract images from saved PDF ---
def extract_images_from_pdf(pdf_path, output_json_path):
    ''' Extract images from PDF and generate structured sprite JSON '''
    
    pdf_filename = os.path.splitext(os.path.basename(pdf_path))[0]  # e.g., "scratch_crab"
    pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
    
    # Create subfolders
    extracted_image_subdir = os.path.join(DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
    json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
    os.makedirs(extracted_image_subdir, exist_ok=True)
    os.makedirs(json_subdir, exist_ok=True)
    
    # Output paths
    output_json_path = os.path.join(json_subdir, "extracted.json")
    final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
    
    elements = partition_pdf(
        filename=pdf_path,
        strategy="hi_res",
        extract_image_block_types=["Image"], 
        extract_image_block_to_payload=True,  # Set to True to get base64 in output
    )
    
    with open(output_json_path, "w") as f:
        json.dump([element.to_dict() for element in elements], f, indent=4)

    # Display extracted images
    with open(output_json_path, 'r') as file:
        file_elements = json.load(file)
        
    # extracted_images_dir = os.path.join(os.path.dirname(output_json_path), "extracted_images")
    # os.makedirs(extracted_images_dir, exist_ok=True)
    
     # Prepare manipulated sprite JSON structure
    manipulated_json = {}

    # Final manipulated file (for captions)
    final_json_path = output_json_path.replace(".json", "_sprites.json")
    
    # If JSON already exists, load it and find the next available Sprite number
    if os.path.exists(final_json_path):
        with open(final_json_path, "r") as existing_file:
            manipulated = json.load(existing_file)
        # Determine the next available index (e.g., Sprite 4 if 1–3 already exist)
        existing_keys = [int(k.replace("Sprite ", "")) for k in manipulated.keys()]
        start_count = max(existing_keys, default=0) + 1
    else:
        start_count = 1
    
    sprite_count = start_count
    for i,element in enumerate(file_elements):
        if "image_base64" in element["metadata"]:
            image_data = base64.b64decode(element["metadata"]["image_base64"])
            image = Image.open(io.BytesIO(image_data)).convert("RGB")
            image.show(title=f"Extracted Image {i+1}")
            image_path = os.path.join(extracted_image_subdir, f"Sprite_{i+1}.png")
            image.save(image_path)
            
            description = get_smolvlm_caption(image, prompt="Give a brief Description")
            name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
            
            manipulated_json[f"Sprite {sprite_count}"] = {
                "name": name,
                "base64": element["metadata"]["image_base64"],
                "file-path": pdf_dir_path,
                "description":description
            }
            sprite_count += 1

# Save manipulated JSON
    with open(final_json_path, "w") as sprite_file:
        json.dump(manipulated_json, sprite_file, indent=4)

    print(f"✅ Manipulated sprite JSON saved: {final_json_path}")
    return final_json_path, manipulated_json

# API endpoint
@app.route('/process_static_pdf', methods=['POST'])
def process_static_pdf():
    # Option 1: Use hardcoded static PDF
    pdf_path = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"

    # Optional: Allow override via JSON request body
    if request.json and "pdf_path" in request.json:
        pdf_path = request.json["pdf_path"]

    if not os.path.isfile(pdf_path):
        return jsonify({"error": f"File not found: {pdf_path}"}), 400

    # json_path = os.path.join(JSON_FOLDER_PATH, "extracted.json")
    json_path = None
    output_path, result = extract_images_from_pdf(pdf_path, json_path)
    
    return jsonify({
        "message": "✅ PDF processed successfully",
        "output_json": output_path,
        "sprites": result
    })

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=True)