Spaces:
Sleeping
Sleeping
File size: 7,129 Bytes
75c46c8 6a97041 cf438e2 75c46c8 cf438e2 75c46c8 b1fb4e5 75c46c8 6a97041 cf438e2 6a97041 cf438e2 6a97041 cf438e2 6a97041 cf438e2 6a97041 cf438e2 6a97041 75c46c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify
import cv2
import numpy as np
from unstructured.partition.pdf import partition_pdf
import json, base64, io, os
from PIL import Image, ImageEnhance, ImageDraw
from imutils.perspective import four_point_transform
from dotenv import load_dotenv
import pytesseract
from transformers import AutoProcessor, AutoModelForImageTextToText
from langchain_community.document_loaders.image_captions import ImageCaptionLoader
from werkzeug.utils import secure_filename
import tempfile, logging
app = Flask(__name__)
# Configure logging
logging.basicConfig(
level=logging.DEBUG, # Use INFO or ERROR in production
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
poppler_path=r"C:\poppler-23.11.0\Library\bin"
count = 0
PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"
OUTPUT_FOLDER = "OUTPUTS"
DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER,"DETECTED_IMAGE")
IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
os.makedirs(path, exist_ok=True)
# Model Initialization
smolvlm256m_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct")
smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
# SmolVLM Image Captioning functioning
def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
# Ensure exactly one <image> token
if "<image>" not in prompt:
prompt = f"<image> {prompt.strip()}"
num_image_tokens = prompt.count("<image>")
if num_image_tokens != 1:
raise ValueError(f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
inputs = smolvlm256m_processor(images=[image], text=[prompt], return_tensors="pt").to("cpu")
output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
# --- FUNCTION: Extract images from saved PDF ---
def extract_images_from_pdf(pdf_path, output_json_path):
''' Extract images from PDF and generate structured sprite JSON '''
pdf_filename = os.path.splitext(os.path.basename(pdf_path))[0] # e.g., "scratch_crab"
pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
# Create subfolders
extracted_image_subdir = os.path.join(DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
os.makedirs(extracted_image_subdir, exist_ok=True)
os.makedirs(json_subdir, exist_ok=True)
# Output paths
output_json_path = os.path.join(json_subdir, "extracted.json")
final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
elements = partition_pdf(
filename=pdf_path,
strategy="hi_res",
extract_image_block_types=["Image"],
extract_image_block_to_payload=True, # Set to True to get base64 in output
)
with open(output_json_path, "w") as f:
json.dump([element.to_dict() for element in elements], f, indent=4)
# Display extracted images
with open(output_json_path, 'r') as file:
file_elements = json.load(file)
# extracted_images_dir = os.path.join(os.path.dirname(output_json_path), "extracted_images")
# os.makedirs(extracted_images_dir, exist_ok=True)
# Prepare manipulated sprite JSON structure
manipulated_json = {}
# Final manipulated file (for captions)
final_json_path = output_json_path.replace(".json", "_sprites.json")
# If JSON already exists, load it and find the next available Sprite number
if os.path.exists(final_json_path):
with open(final_json_path, "r") as existing_file:
manipulated = json.load(existing_file)
# Determine the next available index (e.g., Sprite 4 if 1–3 already exist)
existing_keys = [int(k.replace("Sprite ", "")) for k in manipulated.keys()]
start_count = max(existing_keys, default=0) + 1
else:
start_count = 1
sprite_count = start_count
for i,element in enumerate(file_elements):
if "image_base64" in element["metadata"]:
image_data = base64.b64decode(element["metadata"]["image_base64"])
image = Image.open(io.BytesIO(image_data)).convert("RGB")
image.show(title=f"Extracted Image {i+1}")
image_path = os.path.join(extracted_image_subdir, f"Sprite_{i+1}.png")
image.save(image_path)
description = get_smolvlm_caption(image, prompt="Give a brief Description")
name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
manipulated_json[f"Sprite {sprite_count}"] = {
"name": name,
"base64": element["metadata"]["image_base64"],
"file-path": pdf_dir_path,
"description":description
}
sprite_count += 1
# Save manipulated JSON
with open(final_json_path, "w") as sprite_file:
json.dump(manipulated_json, sprite_file, indent=4)
print(f"✅ Manipulated sprite JSON saved: {final_json_path}")
return final_json_path, manipulated_json
@app.route('/')
def index():
return render_template('app_index.html')
# API endpoint
@app.route('/process_pdf', methods=['POST'])
def process_pdf():
try:
logger.info("Received request to process PDF.")
if 'pdf_file' not in request.files:
logger.warning("No PDF file found in request.")
return jsonify({"error": "Missing PDF file in form-data with key 'pdf_file'"}), 400
pdf_file = request.files['pdf_file']
if pdf_file.filename == '':
return jsonify({"error": "Empty filename"}), 400
# Save the uploaded PDF temporarily
filename = secure_filename(pdf_file.filename)
temp_dir = tempfile.mkdtemp()
saved_pdf_path = os.path.join(temp_dir, filename)
pdf_file.save(saved_pdf_path)
logger.info(f"Saved uploaded PDF to: {saved_pdf_path}")
# Extract & process
json_path = None
output_path, result = extract_images_from_pdf(saved_pdf_path, json_path)
logger.info("Received request to process PDF.")
return jsonify({
"message": "✅ PDF processed successfully",
"output_json": output_path,
"sprites": result
})
except Exception as e:
logger.exception("❌ Failed to process PDF")
return jsonify({"error": f"❌ Failed to process PDF: {str(e)}"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=True) |