Spaces:
Sleeping
Sleeping
File size: 11,417 Bytes
75c46c8 4012b1c 75c46c8 6a97041 4012b1c cf438e2 4012b1c cf438e2 75c46c8 4012b1c 75c46c8 4012b1c 75c46c8 4012b1c 75c46c8 4012b1c 75c46c8 4012b1c 75c46c8 4012b1c 75c46c8 4012b1c 75c46c8 4012b1c 75c46c8 b1fb4e5 75c46c8 6a97041 92be525 6a97041 cf438e2 6a97041 cf438e2 6a97041 cf438e2 6a97041 cf438e2 6a97041 75c46c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify
import cv2
import numpy as np
from unstructured.partition.pdf import partition_pdf
import json, base64, io, os
from PIL import Image, ImageEnhance, ImageDraw
from imutils.perspective import four_point_transform
from dotenv import load_dotenv
import pytesseract
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
from langchain_community.document_loaders.image_captions import ImageCaptionLoader
from werkzeug.utils import secure_filename
import tempfile
import torch
from langchain_groq import ChatGroq
from langgraph.prebuilt import create_react_agent
load_dotenv()
# os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
groq_api_key = os.getenv("GROQ_API_KEY")
llm = ChatGroq(
model="meta-llama/llama-4-maverick-17b-128e-instruct",
temperature=0,
max_tokens=None,
)
app = Flask(__name__)
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
poppler_path=r"C:\poppler-23.11.0\Library\bin"
count = 0
PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"
OUTPUT_FOLDER = "OUTPUTS"
DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER,"DETECTED_IMAGE")
IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
os.makedirs(path, exist_ok=True)
# Model Initialization
try:
smolvlm256m_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct")
# smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
smolvlm256m_model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-256M-Instruct",
torch_dtype=torch.bfloat16 if hasattr(torch, "bfloat16") else torch.float32,
_attn_implementation="eager"
).to("cpu")
except Exception as e:
raise RuntimeError(f"β Failed to load SmolVLM model: {str(e)}")
# SmolVLM Image Captioning functioning
def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
try:
# Ensure exactly one <image> token
if "<image>" not in prompt:
prompt = f"<image> {prompt.strip()}"
num_image_tokens = prompt.count("<image>")
if num_image_tokens != 1:
raise ValueError(f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
inputs = smolvlm256m_processor(images=[image], text=[prompt], return_tensors="pt").to("cpu")
output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
except Exception as e:
return f"β Error during caption generation: {str(e)}"
# --- FUNCTION: Extract images from saved PDF ---
def extract_images_from_pdf(pdf_path, output_json_path):
''' Extract images from PDF and generate structured sprite JSON '''
try:
pdf_filename = os.path.splitext(os.path.basename(pdf_path))[0] # e.g., "scratch_crab"
pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
# Create subfolders
extracted_image_subdir = os.path.join(DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
os.makedirs(extracted_image_subdir, exist_ok=True)
os.makedirs(json_subdir, exist_ok=True)
# Output paths
output_json_path = os.path.join(json_subdir, "extracted.json")
final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
try:
elements = partition_pdf(
filename=pdf_path,
strategy="hi_res",
extract_image_block_types=["Image"],
extract_image_block_to_payload=True, # Set to True to get base64 in output
)
except Exception as e:
raise RuntimeError(f"β Failed to extract images from PDF: {str(e)}")
try:
with open(output_json_path, "w") as f:
json.dump([element.to_dict() for element in elements], f, indent=4)
except Exception as e:
raise RuntimeError(f"β Failed to write extracted.json: {str(e)}")
try:
# Display extracted images
with open(output_json_path, 'r') as file:
file_elements = json.load(file)
except Exception as e:
raise RuntimeError(f"β Failed to read extracted.json: {str(e)}")
# Prepare manipulated sprite JSON structure
manipulated_json = {}
# SET A SYSTEM PROMPT
system_prompt = """
You are an expert in visual scene understanding.
Your Job is to analyze an image and respond acoording if asked for name give simple name by analyzing it and if ask for descrption generate a short description covering its elements.
Guidelines:
- Focus only the images given in Square Shape.
- Don't Consider Blank areas in Image as.
- Don't include generic summary or explanation outside the fields.
Return only string.
"""
agent = create_react_agent(
model = llm,
tools = [],
prompt = system_prompt
)
# If JSON already exists, load it and find the next available Sprite number
if os.path.exists(final_json_path):
with open(final_json_path, "r") as existing_file:
manipulated = json.load(existing_file)
# Determine the next available index (e.g., Sprite 4 if 1β3 already exist)
existing_keys = [int(k.replace("Sprite ", "")) for k in manipulated.keys()]
start_count = max(existing_keys, default=0) + 1
else:
start_count = 1
sprite_count = start_count
for i,element in enumerate(file_elements):
if "image_base64" in element["metadata"]:
try:
image_data = base64.b64decode(element["metadata"]["image_base64"])
image = Image.open(io.BytesIO(image_data)).convert("RGB")
image.show(title=f"Extracted Image {i+1}")
image_path = os.path.join(extracted_image_subdir, f"Sprite_{i+1}.png")
image.save(image_path)
with open(image_path, "rb") as image_file:
image_bytes = image_file.read()
img_base64 = base64.b64encode(image_bytes).decode("utf-8")
# description = get_smolvlm_caption(image, prompt="Give a brief Description")
# name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
def clean_caption_output(raw_output: str, prompt: str) -> str:
answer = raw_output.replace(prompt, '').replace("<image>", '').strip(" :-\n")
return answer
prompt_description = "Give a brief Captioning."
prompt_name = "give a short name caption of this Image."
content1 = [
{
"type": "text",
"text": f"{prompt_description}"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_base64}"
}
}
]
response1 = agent.invoke({"messages": [{"role": "user", "content":content1}]})
print(response1)
description = response1["messages"][-1].content
content2 = [
{
"type": "text",
"text": f"{prompt_name}"
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{img_base64}"
}
}
]
response2 = agent.invoke({"messages": [{"role": "user", "content":content2}]})
print(response2)
name = response2["messages"][-1].content
#raw_description = get_smolvlm_caption(image, prompt=prompt_description)
#raw_name = get_smolvlm_caption(image, prompt=prompt_name)
#description = clean_caption_output(raw_description, prompt_description)
#name = clean_caption_output(raw_name, prompt_name)
manipulated_json[f"Sprite {sprite_count}"] = {
"name": name,
"base64": element["metadata"]["image_base64"],
"file-path": pdf_dir_path,
"description":description
}
sprite_count += 1
except Exception as e:
print(f"β οΈ Error processing Sprite {i+1}: {str(e)}")
# Save manipulated JSON
with open(final_json_path, "w") as sprite_file:
json.dump(manipulated_json, sprite_file, indent=4)
print(f"β
Manipulated sprite JSON saved: {final_json_path}")
return final_json_path, manipulated_json
except Exception as e:
raise RuntimeError(f"β Error in extract_images_from_pdf: {str(e)}")
@app.route('/')
def index():
return render_template('app_index.html')
# API endpoint
@app.route('/process_pdf', methods=['POST'])
def process_pdf():
try:
logger.info("Received request to process PDF.")
if 'pdf_file' not in request.files:
logger.warning("No PDF file found in request.")
return jsonify({"error": "Missing PDF file in form-data with key 'pdf_file'"}), 400
pdf_file = request.files['pdf_file']
if pdf_file.filename == '':
return jsonify({"error": "Empty filename"}), 400
# Save the uploaded PDF temporarily
filename = secure_filename(pdf_file.filename)
temp_dir = tempfile.mkdtemp()
saved_pdf_path = os.path.join(temp_dir, filename)
pdf_file.save(saved_pdf_path)
logger.info(f"Saved uploaded PDF to: {saved_pdf_path}")
# Extract & process
json_path = None
output_path, result = extract_images_from_pdf(saved_pdf_path, json_path)
logger.info("Received request to process PDF.")
return jsonify({
"message": "β
PDF processed successfully",
"output_json": output_path,
"sprites": result
})
except Exception as e:
logger.exception("β Failed to process PDF")
return jsonify({"error": f"β Failed to process PDF: {str(e)}"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=True) |