File size: 11,417 Bytes
75c46c8
 
 
 
 
 
 
 
 
4012b1c
75c46c8
6a97041
4012b1c
 
 
 
 
 
 
 
 
 
 
 
 
cf438e2
 
4012b1c
cf438e2
75c46c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4012b1c
 
 
 
 
 
 
 
 
 
75c46c8
 
 
4012b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
75c46c8
 
 
 
 
4012b1c
 
 
 
 
 
 
 
 
75c46c8
4012b1c
 
 
75c46c8
4012b1c
 
 
 
 
 
 
 
 
75c46c8
4012b1c
 
 
 
 
 
 
 
 
 
 
 
75c46c8
4012b1c
 
 
 
 
 
 
75c46c8
4012b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75c46c8
b1fb4e5
 
 
 
75c46c8
6a97041
 
 
92be525
6a97041
cf438e2
6a97041
 
 
 
 
 
 
 
 
 
 
 
cf438e2
 
6a97041
 
 
 
cf438e2
 
6a97041
 
 
 
 
 
cf438e2
6a97041
75c46c8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify 
import cv2
import numpy as np
from unstructured.partition.pdf import partition_pdf
import json, base64, io, os
from PIL import Image, ImageEnhance, ImageDraw
from imutils.perspective import four_point_transform
from dotenv import load_dotenv
import pytesseract
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
from langchain_community.document_loaders.image_captions import ImageCaptionLoader
from werkzeug.utils import secure_filename
import tempfile
import torch
from langchain_groq import ChatGroq
from langgraph.prebuilt import create_react_agent

load_dotenv()
# os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
groq_api_key = os.getenv("GROQ_API_KEY")

llm = ChatGroq(
    model="meta-llama/llama-4-maverick-17b-128e-instruct",
    temperature=0,
    max_tokens=None,
)

app = Flask(__name__)

pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
poppler_path=r"C:\poppler-23.11.0\Library\bin"

count = 0
PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"

OUTPUT_FOLDER = "OUTPUTS"
DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER,"DETECTED_IMAGE")
IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")

for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
    os.makedirs(path, exist_ok=True)

# Model Initialization
try:
    smolvlm256m_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct")
    # smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
    smolvlm256m_model = AutoModelForVision2Seq.from_pretrained(
    "HuggingFaceTB/SmolVLM-256M-Instruct",
    torch_dtype=torch.bfloat16 if hasattr(torch, "bfloat16") else torch.float32,
    _attn_implementation="eager"
).to("cpu")
except Exception as e:
    raise RuntimeError(f"❌ Failed to load SmolVLM model: {str(e)}")

# SmolVLM Image Captioning functioning
def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
    try:
        # Ensure exactly one <image> token
        if "<image>" not in prompt:
            prompt = f"<image> {prompt.strip()}" 
        
        num_image_tokens = prompt.count("<image>")
        if num_image_tokens != 1:
            raise ValueError(f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
        
        inputs = smolvlm256m_processor(images=[image], text=[prompt], return_tensors="pt").to("cpu")
        output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
        return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
    except Exception as e:
        return f"❌ Error during caption generation: {str(e)}"

# --- FUNCTION: Extract images from saved PDF ---
def extract_images_from_pdf(pdf_path, output_json_path):
    ''' Extract images from PDF and generate structured sprite JSON '''
    
    try:
        pdf_filename = os.path.splitext(os.path.basename(pdf_path))[0]  # e.g., "scratch_crab"
        pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
        
        # Create subfolders
        extracted_image_subdir = os.path.join(DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
        json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
        os.makedirs(extracted_image_subdir, exist_ok=True)
        os.makedirs(json_subdir, exist_ok=True)
        
        # Output paths
        output_json_path = os.path.join(json_subdir, "extracted.json")
        final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
    
        try:    
            elements = partition_pdf(
                filename=pdf_path,
                strategy="hi_res",
                extract_image_block_types=["Image"], 
                extract_image_block_to_payload=True,  # Set to True to get base64 in output
            )
        except Exception as e:
            raise RuntimeError(f"❌ Failed to extract images from PDF: {str(e)}")
    
        try:
            with open(output_json_path, "w") as f:
                json.dump([element.to_dict() for element in elements], f, indent=4)
        except Exception as e:
            raise RuntimeError(f"❌ Failed to write extracted.json: {str(e)}")

        try:
            # Display extracted images
            with open(output_json_path, 'r') as file:
                file_elements = json.load(file)
        except Exception as e:
            raise RuntimeError(f"❌ Failed to read extracted.json: {str(e)}")
    
        # Prepare manipulated sprite JSON structure
        manipulated_json = {}
        
        # SET A SYSTEM PROMPT
        system_prompt = """
            You are an expert in visual scene understanding.
            Your Job is to analyze an image and respond acoording if asked for name give simple name by analyzing it and if ask for descrption generate a short description covering its elements.
            
            Guidelines:
            - Focus only the images given in Square Shape.
            - Don't Consider Blank areas in Image as.
            - Don't include generic summary or explanation outside the fields.
            Return only string.
            """

        agent = create_react_agent(
            model = llm, 
            tools = [],
            prompt = system_prompt
        )
        
        # If JSON already exists, load it and find the next available Sprite number
        if os.path.exists(final_json_path):
            with open(final_json_path, "r") as existing_file:
                manipulated = json.load(existing_file)
            # Determine the next available index (e.g., Sprite 4 if 1–3 already exist)
            existing_keys = [int(k.replace("Sprite ", "")) for k in manipulated.keys()]
            start_count = max(existing_keys, default=0) + 1
        else:
            start_count = 1
        
        sprite_count = start_count
        for i,element in enumerate(file_elements):
            if "image_base64" in element["metadata"]:
                try:
                    image_data = base64.b64decode(element["metadata"]["image_base64"])
                    image = Image.open(io.BytesIO(image_data)).convert("RGB")
                    image.show(title=f"Extracted Image {i+1}")
                    image_path = os.path.join(extracted_image_subdir, f"Sprite_{i+1}.png")
                    image.save(image_path)     
                    with open(image_path, "rb") as image_file:
                        image_bytes = image_file.read()
                    img_base64 = base64.b64encode(image_bytes).decode("utf-8")               
                    # description = get_smolvlm_caption(image, prompt="Give a brief Description")
                    # name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
                    def clean_caption_output(raw_output: str, prompt: str) -> str:
                        answer = raw_output.replace(prompt, '').replace("<image>", '').strip(" :-\n")
                        return answer

                    prompt_description = "Give a brief Captioning."
                    prompt_name = "give a short name caption of this Image."
                    
                    content1 = [
                        {
                            "type": "text",
                            "text": f"{prompt_description}"
                        },
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{img_base64}"
                            }
                        }
                    ]
                    response1 = agent.invoke({"messages": [{"role": "user", "content":content1}]})
                    print(response1)        
                    description = response1["messages"][-1].content
                    
                    content2 = [
                        {
                            "type": "text",
                            "text": f"{prompt_name}"
                        },
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{img_base64}"
                            }
                        }
                    ]
                    
                    response2 = agent.invoke({"messages": [{"role": "user", "content":content2}]})
                    print(response2)        
                    name = response2["messages"][-1].content

                    #raw_description = get_smolvlm_caption(image, prompt=prompt_description)
                    #raw_name = get_smolvlm_caption(image, prompt=prompt_name)

                    #description = clean_caption_output(raw_description, prompt_description)
                    #name = clean_caption_output(raw_name, prompt_name)
                    
                    manipulated_json[f"Sprite {sprite_count}"] = {
                        "name": name,
                        "base64": element["metadata"]["image_base64"],
                        "file-path": pdf_dir_path,
                        "description":description
                    }
                    sprite_count += 1
                except Exception as e:
                    print(f"⚠️ Error processing Sprite {i+1}: {str(e)}")

        # Save manipulated JSON
        with open(final_json_path, "w") as sprite_file:
            json.dump(manipulated_json, sprite_file, indent=4)

        print(f"βœ… Manipulated sprite JSON saved: {final_json_path}")
        return final_json_path, manipulated_json
    
    except Exception as e:
        raise RuntimeError(f"❌ Error in extract_images_from_pdf: {str(e)}")

@app.route('/')
def index():
    return render_template('app_index.html')

# API endpoint
@app.route('/process_pdf', methods=['POST'])
def process_pdf():
    try:
        logger.info("Received request to process PDF.")
        if 'pdf_file' not in request.files:
            logger.warning("No PDF file found in request.")
            return jsonify({"error": "Missing PDF file in form-data with key 'pdf_file'"}), 400

        pdf_file = request.files['pdf_file']
        if pdf_file.filename == '':
            return jsonify({"error": "Empty filename"}), 400

        # Save the uploaded PDF temporarily
        filename = secure_filename(pdf_file.filename)
        temp_dir = tempfile.mkdtemp()
        saved_pdf_path = os.path.join(temp_dir, filename)
        pdf_file.save(saved_pdf_path)

        logger.info(f"Saved uploaded PDF to: {saved_pdf_path}")
        
        # Extract & process
        json_path = None
        output_path, result = extract_images_from_pdf(saved_pdf_path, json_path)

         logger.info("Received request to process PDF.")

        return jsonify({
            "message": "βœ… PDF processed successfully",
            "output_json": output_path,
            "sprites": result
        })
    except Exception as e:
        logger.exception("❌ Failed to process PDF")
        return jsonify({"error": f"❌ Failed to process PDF: {str(e)}"}), 500

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=True)