Spaces:
Sleeping
Sleeping
| from flask import Flask, render_template, Response, flash, redirect, url_for | |
| import cv2 | |
| from unstructured.partition.pdf import partition_pdf | |
| import json, base64, io, os | |
| from PIL import Image | |
| from imutils.perspective import four_point_transform | |
| from dotenv import load_dotenv | |
| import pytesseract | |
| load_dotenv() | |
| app = Flask(__name__) | |
| app.secret_key = os.getenv("SECRET_KEY") | |
| pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" | |
| poppler_path=r"C:\poppler-23.11.0\Library\bin" | |
| count = 0 | |
| OUTPUT_FOLDER = "OUTPUTS" | |
| IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE") | |
| DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER,"DETECTED_IMAGE") | |
| PDF_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_PDF") | |
| JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON") | |
| for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, PDF_FOLDER_PATH, JSON_FOLDER_PATH]: | |
| os.makedirs(path, exist_ok=True) | |
| camera = cv2.VideoCapture('rtsp://freja.hiof.no:1935/rtplive/_definst_/hessdalen03.stream') # use 0 for web camera | |
| # for cctv camera use rtsp://username:password@ip_address:554/user=username_password='password'_channel=channel_number_stream=0.sdp' instead of camera | |
| # for local webcam use | |
| # camera= cv2.VideoCapture(0) | |
| # Increase resolution if supported by the webcam | |
| camera.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) | |
| camera.set(cv2.CAP_PROP_FRAME_HEIGHT, 720) | |
| camera.set(cv2.CAP_PROP_FPS, 30) | |
| # --- FUNCTION: Detect document contour --- | |
| def detect_document_contour(image): | |
| gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
| blur = cv2.GaussianBlur(gray, (5, 5), 0) | |
| _, thresh = cv2.threshold(blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) | |
| contours, _ = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) | |
| contours = sorted(contours, key=cv2.contourArea, reverse=True) | |
| for contour in contours: | |
| area = cv2.contourArea(contour) | |
| if area > 1000: | |
| peri = cv2.arcLength(contour, True) | |
| approx = cv2.approxPolyDP(contour, 0.02 * peri, True) | |
| if len(approx) == 4: | |
| return approx | |
| return None | |
| # --- FUNCTION: Extract images from saved PDF --- | |
| def extract_images_from_pdf(pdf_path, output_json_path): | |
| elements = partition_pdf( | |
| filename=pdf_path, | |
| strategy="hi_res", | |
| extract_image_block_types=["Image"], # or ["Image", "Table"] | |
| extract_image_block_to_payload=True, # Set to True to get base64 in output | |
| ) | |
| with open(output_json_path, "w") as f: | |
| json.dump([element.to_dict() for element in elements], f, indent=4) | |
| # Display extracted images | |
| with open(output_json_path, 'r') as file: | |
| file_elements = json.load(file) | |
| extracted_images_dir = os.path.join(os.path.dirname(output_json_path), "extracted_images") | |
| os.makedirs(extracted_images_dir, exist_ok=True) | |
| for i, element in enumerate(file_elements): | |
| if "image_base64" in element["metadata"]: | |
| image_data = base64.b64decode(element["metadata"]["image_base64"]) | |
| image = Image.open(io.BytesIO(image_data)) | |
| image.show(title=f"Extracted Image {i+1}") | |
| # image.save(DETECTED_IMAGE_FOLDER_PATH, f"Extracted Image {i+1}.png") | |
| display = None | |
| scale = 0.5 | |
| contour = None | |
| def gen_frames(): # generate frame by frame from camera | |
| global display | |
| while True: | |
| # Capture frame-by-frame | |
| success, frame = camera.read() # read the camera frame | |
| if not success: | |
| break | |
| else: | |
| display = frame.copy() | |
| contour = detect_document_contour(display) | |
| if contour is not None: | |
| cv2.drawContours(display, [contour], -1, (0, 255, 0), 3) | |
| resized = cv2.resize(display, (int(scale * display.shape[1]), int(scale * display.shape[0]))) | |
| cv2.imshow("📷 Scan Document - Press 's' to Save, ESC to Exit", resized) | |
| ret, buffer = cv2.imencode('.jpg', resized) | |
| frame = buffer.tobytes() | |
| yield (b'--frame\r\n' | |
| b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') # concat frame one by one and show result | |
| # --- Route: Scan Document --- | |
| def capture_document(): | |
| global count, display | |
| if display is None: | |
| flash("❌ No frame captured!", "error") | |
| return redirect(url_for("index")) | |
| frame = display.copy() | |
| contour = detect_document_contour(frame) | |
| if contour is None: | |
| flash("❌ No document contour found!", "error") | |
| return redirect(url_for("index")) | |
| warped = four_point_transform(frame, contour.reshape(4, 2)) | |
| image_path = os.path.join(IMAGE_FOLDER_PATH, f"scanned_colored_{count}.jpg") | |
| pdf_path = os.path.join(PDF_FOLDER_PATH, f"scanned_colored_{count}.pdf") | |
| json_path = os.path.join(JSON_FOLDER_PATH, f"scanned_{count}.json") | |
| # json_path = os.path.join(DETECTED_IMAGE_FOLDER_PATH, f"scanned_{count}.json") | |
| cv2.imwrite(image_path, warped) | |
| img = Image.open(image_path).convert("RGB") | |
| img.save(pdf_path) | |
| extract_images_from_pdf(pdf_path, json_path) | |
| flash("✅ Document scanned and saved!", "success") | |
| count += 1 | |
| return redirect(url_for("index")) | |
| def video_feed(): | |
| #Video streaming route. Put this in the src attribute of an img tag | |
| return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame') | |
| def index(): | |
| """Video streaming home page.""" | |
| return render_template('live_streaming_index.html') | |
| if __name__ == '__main__': | |
| app.run(host="0.0.0.0", port=7860, debug=False) |