Spaces:
Sleeping
Sleeping
Update app_main.py
Browse files- app_main.py +500 -499
app_main.py
CHANGED
@@ -1,499 +1,500 @@
|
|
1 |
-
from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify
|
2 |
-
import cv2
|
3 |
-
import numpy as np
|
4 |
-
from unstructured.partition.pdf import partition_pdf
|
5 |
-
import json
|
6 |
-
import base64
|
7 |
-
import io
|
8 |
-
import os
|
9 |
-
from PIL import Image, ImageEnhance, ImageDraw
|
10 |
-
from imutils.perspective import four_point_transform
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
import pytesseract
|
13 |
-
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
|
14 |
-
from langchain_community.document_loaders.image_captions import ImageCaptionLoader
|
15 |
-
from werkzeug.utils import secure_filename
|
16 |
-
import tempfile
|
17 |
-
import torch
|
18 |
-
from langchain_groq import ChatGroq
|
19 |
-
from langgraph.prebuilt import create_react_agent
|
20 |
-
import logging
|
21 |
-
|
22 |
-
# Configure logging
|
23 |
-
logging.basicConfig(
|
24 |
-
level=logging.DEBUG, # Use INFO or ERROR in production
|
25 |
-
format="%(asctime)s [%(levelname)s] %(message)s",
|
26 |
-
handlers=[
|
27 |
-
logging.FileHandler("app.log"),
|
28 |
-
logging.StreamHandler()
|
29 |
-
]
|
30 |
-
)
|
31 |
-
|
32 |
-
logger = logging.getLogger(__name__)
|
33 |
-
|
34 |
-
load_dotenv()
|
35 |
-
# os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
36 |
-
groq_api_key = os.getenv("GROQ_API_KEY")
|
37 |
-
|
38 |
-
llm = ChatGroq(
|
39 |
-
model="meta-llama/llama-4-maverick-17b-128e-instruct",
|
40 |
-
temperature=0,
|
41 |
-
max_tokens=None,
|
42 |
-
)
|
43 |
-
|
44 |
-
app = Flask(__name__)
|
45 |
-
|
46 |
-
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
47 |
-
poppler_path = r"C:\poppler-23.11.0\Library\bin"
|
48 |
-
|
49 |
-
count = 0
|
50 |
-
PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"
|
51 |
-
|
52 |
-
OUTPUT_FOLDER = "OUTPUTS"
|
53 |
-
DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "DETECTED_IMAGE")
|
54 |
-
IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
|
55 |
-
JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
|
56 |
-
|
57 |
-
for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
|
58 |
-
os.makedirs(path, exist_ok=True)
|
59 |
-
|
60 |
-
# Model Initialization
|
61 |
-
try:
|
62 |
-
smolvlm256m_processor = AutoProcessor.from_pretrained(
|
63 |
-
"HuggingFaceTB/SmolVLM-256M-Instruct")
|
64 |
-
# smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
|
65 |
-
smolvlm256m_model = AutoModelForVision2Seq.from_pretrained(
|
66 |
-
"HuggingFaceTB/SmolVLM-256M-Instruct",
|
67 |
-
torch_dtype=torch.bfloat16 if hasattr(
|
68 |
-
torch, "bfloat16") else torch.float32,
|
69 |
-
_attn_implementation="eager"
|
70 |
-
).to("cpu")
|
71 |
-
except Exception as e:
|
72 |
-
raise RuntimeError(f"❌ Failed to load SmolVLM model: {str(e)}")
|
73 |
-
|
74 |
-
# SmolVLM Image Captioning functioning
|
75 |
-
|
76 |
-
|
77 |
-
def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
|
78 |
-
try:
|
79 |
-
# Ensure exactly one <image> token
|
80 |
-
if "<image>" not in prompt:
|
81 |
-
prompt = f"<image> {prompt.strip()}"
|
82 |
-
|
83 |
-
num_image_tokens = prompt.count("<image>")
|
84 |
-
if num_image_tokens != 1:
|
85 |
-
raise ValueError(
|
86 |
-
f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
|
87 |
-
|
88 |
-
inputs = smolvlm256m_processor(
|
89 |
-
images=[image], text=[prompt], return_tensors="pt").to("cpu")
|
90 |
-
output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
|
91 |
-
return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
|
92 |
-
except Exception as e:
|
93 |
-
return f"❌ Error during caption generation: {str(e)}"
|
94 |
-
|
95 |
-
# --- FUNCTION: Extract images from saved PDF ---
|
96 |
-
|
97 |
-
|
98 |
-
def extract_images_from_pdf(pdf_path, output_json_path):
|
99 |
-
''' Extract images from PDF and generate structured sprite JSON '''
|
100 |
-
|
101 |
-
try:
|
102 |
-
pdf_filename = os.path.splitext(os.path.basename(pdf_path))[
|
103 |
-
0] # e.g., "scratch_crab"
|
104 |
-
pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
|
105 |
-
|
106 |
-
# Create subfolders
|
107 |
-
extracted_image_subdir = os.path.join(
|
108 |
-
DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
|
109 |
-
json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
|
110 |
-
os.makedirs(extracted_image_subdir, exist_ok=True)
|
111 |
-
os.makedirs(json_subdir, exist_ok=True)
|
112 |
-
|
113 |
-
# Output paths
|
114 |
-
output_json_path = os.path.join(json_subdir, "extracted.json")
|
115 |
-
final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
|
116 |
-
|
117 |
-
try:
|
118 |
-
elements = partition_pdf(
|
119 |
-
filename=pdf_path,
|
120 |
-
strategy="hi_res",
|
121 |
-
extract_image_block_types=["Image"],
|
122 |
-
extract_image_block_to_payload=True, # Set to True to get base64 in output
|
123 |
-
)
|
124 |
-
except Exception as e:
|
125 |
-
raise RuntimeError(
|
126 |
-
f"❌ Failed to extract images from PDF: {str(e)}")
|
127 |
-
|
128 |
-
try:
|
129 |
-
with open(output_json_path, "w") as f:
|
130 |
-
json.dump([element.to_dict()
|
131 |
-
for element in elements], f, indent=4)
|
132 |
-
except Exception as e:
|
133 |
-
raise RuntimeError(f"❌ Failed to write extracted.json: {str(e)}")
|
134 |
-
|
135 |
-
try:
|
136 |
-
# Display extracted images
|
137 |
-
with open(output_json_path, 'r') as file:
|
138 |
-
file_elements = json.load(file)
|
139 |
-
except Exception as e:
|
140 |
-
raise RuntimeError(f"❌ Failed to read extracted.json: {str(e)}")
|
141 |
-
|
142 |
-
# Prepare manipulated sprite JSON structure
|
143 |
-
manipulated_json = {}
|
144 |
-
|
145 |
-
# SET A SYSTEM PROMPT
|
146 |
-
system_prompt = """
|
147 |
-
You are an expert in visual scene understanding.
|
148 |
-
Your Job is to analyze an image and respond acoording if asked for name give simple name by analyzing it and if ask for descrption generate a short description covering its elements.
|
149 |
-
|
150 |
-
Guidelines:
|
151 |
-
- Focus only the images given in Square Shape.
|
152 |
-
- Don't Consider Blank areas in Image as.
|
153 |
-
- Don't include generic summary or explanation outside the fields.
|
154 |
-
Return only string.
|
155 |
-
"""
|
156 |
-
|
157 |
-
agent = create_react_agent(
|
158 |
-
model=llm,
|
159 |
-
tools=[],
|
160 |
-
prompt=system_prompt
|
161 |
-
)
|
162 |
-
|
163 |
-
# If JSON already exists, load it and find the next available Sprite number
|
164 |
-
if os.path.exists(final_json_path):
|
165 |
-
with open(final_json_path, "r") as existing_file:
|
166 |
-
manipulated = json.load(existing_file)
|
167 |
-
# Determine the next available index (e.g., Sprite 4 if 1–3 already exist)
|
168 |
-
existing_keys = [int(k.replace("Sprite ", ""))
|
169 |
-
for k in manipulated.keys()]
|
170 |
-
start_count = max(existing_keys, default=0) + 1
|
171 |
-
else:
|
172 |
-
start_count = 1
|
173 |
-
|
174 |
-
sprite_count = start_count
|
175 |
-
for i, element in enumerate(file_elements):
|
176 |
-
if "image_base64" in element["metadata"]:
|
177 |
-
try:
|
178 |
-
image_data = base64.b64decode(
|
179 |
-
element["metadata"]["image_base64"])
|
180 |
-
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
181 |
-
image.show(title=f"Extracted Image {i+1}")
|
182 |
-
image_path = os.path.join(
|
183 |
-
extracted_image_subdir, f"Sprite_{i+1}.png")
|
184 |
-
image.save(image_path)
|
185 |
-
with open(image_path, "rb") as image_file:
|
186 |
-
image_bytes = image_file.read()
|
187 |
-
img_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
188 |
-
# description = get_smolvlm_caption(image, prompt="Give a brief Description")
|
189 |
-
# name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
|
190 |
-
|
191 |
-
def clean_caption_output(raw_output: str, prompt: str) -> str:
|
192 |
-
answer = raw_output.replace(prompt, '').replace(
|
193 |
-
"<image>", '').strip(" :-\n")
|
194 |
-
return answer
|
195 |
-
|
196 |
-
prompt_description = "Give a brief Captioning."
|
197 |
-
prompt_name = "give a short name caption of this Image."
|
198 |
-
|
199 |
-
content1 = [
|
200 |
-
{
|
201 |
-
"type": "text",
|
202 |
-
"text": f"{prompt_description}"
|
203 |
-
},
|
204 |
-
{
|
205 |
-
"type": "image_url",
|
206 |
-
"image_url": {
|
207 |
-
"url": f"data:image/jpeg;base64,{img_base64}"
|
208 |
-
}
|
209 |
-
}
|
210 |
-
]
|
211 |
-
response1 = agent.invoke(
|
212 |
-
{"messages": [{"role": "user", "content": content1}]})
|
213 |
-
print(response1)
|
214 |
-
description = response1["messages"][-1].content
|
215 |
-
|
216 |
-
content2 = [
|
217 |
-
{
|
218 |
-
"type": "text",
|
219 |
-
"text": f"{prompt_name}"
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"type": "image_url",
|
223 |
-
"image_url": {
|
224 |
-
"url": f"data:image/jpeg;base64,{img_base64}"
|
225 |
-
}
|
226 |
-
}
|
227 |
-
]
|
228 |
-
|
229 |
-
response2 = agent.invoke(
|
230 |
-
{"messages": [{"role": "user", "content": content2}]})
|
231 |
-
print(response2)
|
232 |
-
name = response2["messages"][-1].content
|
233 |
-
|
234 |
-
# raw_description = get_smolvlm_caption(image, prompt=prompt_description)
|
235 |
-
# raw_name = get_smolvlm_caption(image, prompt=prompt_name)
|
236 |
-
|
237 |
-
# description = clean_caption_output(raw_description, prompt_description)
|
238 |
-
# name = clean_caption_output(raw_name, prompt_name)
|
239 |
-
|
240 |
-
manipulated_json[f"Sprite {sprite_count}"] = {
|
241 |
-
"name": name,
|
242 |
-
"base64": element["metadata"]["image_base64"],
|
243 |
-
"file-path": pdf_dir_path,
|
244 |
-
"description": description
|
245 |
-
}
|
246 |
-
sprite_count += 1
|
247 |
-
except Exception as e:
|
248 |
-
print(f"⚠️ Error processing Sprite {i+1}: {str(e)}")
|
249 |
-
|
250 |
-
# Save manipulated JSON
|
251 |
-
with open(final_json_path, "w") as sprite_file:
|
252 |
-
json.dump(manipulated_json, sprite_file, indent=4)
|
253 |
-
|
254 |
-
print(f"✅ Manipulated sprite JSON saved: {final_json_path}")
|
255 |
-
return final_json_path, manipulated_json
|
256 |
-
|
257 |
-
except Exception as e:
|
258 |
-
raise RuntimeError(f"❌ Error in extract_images_from_pdf: {str(e)}")
|
259 |
-
|
260 |
-
|
261 |
-
def similarity_matching(input_json_path: str) -> str:
|
262 |
-
import uuid
|
263 |
-
import shutil
|
264 |
-
import tempfile
|
265 |
-
from langchain_experimental.open_clip.open_clip import OpenCLIPEmbeddings
|
266 |
-
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
|
267 |
-
from io import BytesIO
|
268 |
-
|
269 |
-
logger.info("🔍 Running similarity matching...")
|
270 |
-
|
271 |
-
# ============================== #
|
272 |
-
# DEFINE PATHS #
|
273 |
-
# ============================== #
|
274 |
-
backdrop_images_path =
|
275 |
-
sprite_images_path =
|
276 |
-
image_dirs = [backdrop_images_path, sprite_images_path]
|
277 |
-
|
278 |
-
# ================================================= #
|
279 |
-
# Generate Random UUID for project folder name #
|
280 |
-
# ================================================= #
|
281 |
-
random_id = str(uuid.uuid4()).replace('-', '')
|
282 |
-
project_folder = os.path.join("outputs", f"project_{random_id}")
|
283 |
-
|
284 |
-
# =========================================================================== #
|
285 |
-
# Create empty json in project_{random_id} folder #
|
286 |
-
# =========================================================================== #
|
287 |
-
os.makedirs(project_folder, exist_ok=True)
|
288 |
-
project_json_path = os.path.join(project_folder, "project.json")
|
289 |
-
|
290 |
-
# ============================== #
|
291 |
-
# READ SPRITE METADATA #
|
292 |
-
# ============================== #
|
293 |
-
with open(input_json_path, 'r') as f:
|
294 |
-
sprites_data = json.load(f)
|
295 |
-
|
296 |
-
sprite_ids, texts, sprite_base64 = [], [], []
|
297 |
-
for sid, sprite in sprites_data.items():
|
298 |
-
sprite_ids.append(sid)
|
299 |
-
texts.append(
|
300 |
-
"This is " + sprite.get("description", sprite.get("name", "")))
|
301 |
-
sprite_base64.append(sprite["base64"])
|
302 |
-
|
303 |
-
# ============================== #
|
304 |
-
# INITIALIZE CLIP EMBEDDER #
|
305 |
-
# ============================== #
|
306 |
-
clip_embd = OpenCLIPEmbeddings()
|
307 |
-
|
308 |
-
# ========================================= #
|
309 |
-
# Walk folders to collect all image paths #
|
310 |
-
# ========================================= #
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
#
|
319 |
-
#
|
320 |
-
#
|
321 |
-
|
322 |
-
|
323 |
-
#
|
324 |
-
#
|
325 |
-
#
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
#
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
#
|
339 |
-
#
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
#
|
351 |
-
#
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
#
|
356 |
-
#
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
matched_image_path = os.path.normpath(
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
"
|
408 |
-
"
|
409 |
-
"
|
410 |
-
|
411 |
-
"
|
412 |
-
"
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
"
|
429 |
-
"
|
430 |
-
"
|
431 |
-
"
|
432 |
-
"
|
433 |
-
"
|
434 |
-
"
|
435 |
-
"
|
436 |
-
"
|
437 |
-
"
|
438 |
-
"
|
439 |
-
"
|
440 |
-
"
|
441 |
-
"
|
442 |
-
"
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
"
|
490 |
-
"
|
491 |
-
"
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
|
|
|
1 |
+
from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from unstructured.partition.pdf import partition_pdf
|
5 |
+
import json
|
6 |
+
import base64
|
7 |
+
import io
|
8 |
+
import os
|
9 |
+
from PIL import Image, ImageEnhance, ImageDraw
|
10 |
+
from imutils.perspective import four_point_transform
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
import pytesseract
|
13 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
|
14 |
+
from langchain_community.document_loaders.image_captions import ImageCaptionLoader
|
15 |
+
from werkzeug.utils import secure_filename
|
16 |
+
import tempfile
|
17 |
+
import torch
|
18 |
+
from langchain_groq import ChatGroq
|
19 |
+
from langgraph.prebuilt import create_react_agent
|
20 |
+
import logging
|
21 |
+
|
22 |
+
# Configure logging
|
23 |
+
logging.basicConfig(
|
24 |
+
level=logging.DEBUG, # Use INFO or ERROR in production
|
25 |
+
format="%(asctime)s [%(levelname)s] %(message)s",
|
26 |
+
handlers=[
|
27 |
+
logging.FileHandler("app.log"),
|
28 |
+
logging.StreamHandler()
|
29 |
+
]
|
30 |
+
)
|
31 |
+
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
|
34 |
+
load_dotenv()
|
35 |
+
# os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
|
36 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
37 |
+
|
38 |
+
llm = ChatGroq(
|
39 |
+
model="meta-llama/llama-4-maverick-17b-128e-instruct",
|
40 |
+
temperature=0,
|
41 |
+
max_tokens=None,
|
42 |
+
)
|
43 |
+
|
44 |
+
app = Flask(__name__)
|
45 |
+
|
46 |
+
pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
|
47 |
+
poppler_path = r"C:\poppler-23.11.0\Library\bin"
|
48 |
+
|
49 |
+
count = 0
|
50 |
+
PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"
|
51 |
+
|
52 |
+
OUTPUT_FOLDER = "OUTPUTS"
|
53 |
+
DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "DETECTED_IMAGE")
|
54 |
+
IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
|
55 |
+
JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
|
56 |
+
|
57 |
+
for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
|
58 |
+
os.makedirs(path, exist_ok=True)
|
59 |
+
|
60 |
+
# Model Initialization
|
61 |
+
try:
|
62 |
+
smolvlm256m_processor = AutoProcessor.from_pretrained(
|
63 |
+
"HuggingFaceTB/SmolVLM-256M-Instruct")
|
64 |
+
# smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
|
65 |
+
smolvlm256m_model = AutoModelForVision2Seq.from_pretrained(
|
66 |
+
"HuggingFaceTB/SmolVLM-256M-Instruct",
|
67 |
+
torch_dtype=torch.bfloat16 if hasattr(
|
68 |
+
torch, "bfloat16") else torch.float32,
|
69 |
+
_attn_implementation="eager"
|
70 |
+
).to("cpu")
|
71 |
+
except Exception as e:
|
72 |
+
raise RuntimeError(f"❌ Failed to load SmolVLM model: {str(e)}")
|
73 |
+
|
74 |
+
# SmolVLM Image Captioning functioning
|
75 |
+
|
76 |
+
|
77 |
+
def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
|
78 |
+
try:
|
79 |
+
# Ensure exactly one <image> token
|
80 |
+
if "<image>" not in prompt:
|
81 |
+
prompt = f"<image> {prompt.strip()}"
|
82 |
+
|
83 |
+
num_image_tokens = prompt.count("<image>")
|
84 |
+
if num_image_tokens != 1:
|
85 |
+
raise ValueError(
|
86 |
+
f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
|
87 |
+
|
88 |
+
inputs = smolvlm256m_processor(
|
89 |
+
images=[image], text=[prompt], return_tensors="pt").to("cpu")
|
90 |
+
output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
|
91 |
+
return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
|
92 |
+
except Exception as e:
|
93 |
+
return f"❌ Error during caption generation: {str(e)}"
|
94 |
+
|
95 |
+
# --- FUNCTION: Extract images from saved PDF ---
|
96 |
+
|
97 |
+
|
98 |
+
def extract_images_from_pdf(pdf_path, output_json_path):
|
99 |
+
''' Extract images from PDF and generate structured sprite JSON '''
|
100 |
+
|
101 |
+
try:
|
102 |
+
pdf_filename = os.path.splitext(os.path.basename(pdf_path))[
|
103 |
+
0] # e.g., "scratch_crab"
|
104 |
+
pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
|
105 |
+
|
106 |
+
# Create subfolders
|
107 |
+
extracted_image_subdir = os.path.join(
|
108 |
+
DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
|
109 |
+
json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
|
110 |
+
os.makedirs(extracted_image_subdir, exist_ok=True)
|
111 |
+
os.makedirs(json_subdir, exist_ok=True)
|
112 |
+
|
113 |
+
# Output paths
|
114 |
+
output_json_path = os.path.join(json_subdir, "extracted.json")
|
115 |
+
final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
|
116 |
+
|
117 |
+
try:
|
118 |
+
elements = partition_pdf(
|
119 |
+
filename=pdf_path,
|
120 |
+
strategy="hi_res",
|
121 |
+
extract_image_block_types=["Image"],
|
122 |
+
extract_image_block_to_payload=True, # Set to True to get base64 in output
|
123 |
+
)
|
124 |
+
except Exception as e:
|
125 |
+
raise RuntimeError(
|
126 |
+
f"❌ Failed to extract images from PDF: {str(e)}")
|
127 |
+
|
128 |
+
try:
|
129 |
+
with open(output_json_path, "w") as f:
|
130 |
+
json.dump([element.to_dict()
|
131 |
+
for element in elements], f, indent=4)
|
132 |
+
except Exception as e:
|
133 |
+
raise RuntimeError(f"❌ Failed to write extracted.json: {str(e)}")
|
134 |
+
|
135 |
+
try:
|
136 |
+
# Display extracted images
|
137 |
+
with open(output_json_path, 'r') as file:
|
138 |
+
file_elements = json.load(file)
|
139 |
+
except Exception as e:
|
140 |
+
raise RuntimeError(f"❌ Failed to read extracted.json: {str(e)}")
|
141 |
+
|
142 |
+
# Prepare manipulated sprite JSON structure
|
143 |
+
manipulated_json = {}
|
144 |
+
|
145 |
+
# SET A SYSTEM PROMPT
|
146 |
+
system_prompt = """
|
147 |
+
You are an expert in visual scene understanding.
|
148 |
+
Your Job is to analyze an image and respond acoording if asked for name give simple name by analyzing it and if ask for descrption generate a short description covering its elements.
|
149 |
+
|
150 |
+
Guidelines:
|
151 |
+
- Focus only the images given in Square Shape.
|
152 |
+
- Don't Consider Blank areas in Image as.
|
153 |
+
- Don't include generic summary or explanation outside the fields.
|
154 |
+
Return only string.
|
155 |
+
"""
|
156 |
+
|
157 |
+
agent = create_react_agent(
|
158 |
+
model=llm,
|
159 |
+
tools=[],
|
160 |
+
prompt=system_prompt
|
161 |
+
)
|
162 |
+
|
163 |
+
# If JSON already exists, load it and find the next available Sprite number
|
164 |
+
if os.path.exists(final_json_path):
|
165 |
+
with open(final_json_path, "r") as existing_file:
|
166 |
+
manipulated = json.load(existing_file)
|
167 |
+
# Determine the next available index (e.g., Sprite 4 if 1–3 already exist)
|
168 |
+
existing_keys = [int(k.replace("Sprite ", ""))
|
169 |
+
for k in manipulated.keys()]
|
170 |
+
start_count = max(existing_keys, default=0) + 1
|
171 |
+
else:
|
172 |
+
start_count = 1
|
173 |
+
|
174 |
+
sprite_count = start_count
|
175 |
+
for i, element in enumerate(file_elements):
|
176 |
+
if "image_base64" in element["metadata"]:
|
177 |
+
try:
|
178 |
+
image_data = base64.b64decode(
|
179 |
+
element["metadata"]["image_base64"])
|
180 |
+
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
181 |
+
image.show(title=f"Extracted Image {i+1}")
|
182 |
+
image_path = os.path.join(
|
183 |
+
extracted_image_subdir, f"Sprite_{i+1}.png")
|
184 |
+
image.save(image_path)
|
185 |
+
with open(image_path, "rb") as image_file:
|
186 |
+
image_bytes = image_file.read()
|
187 |
+
img_base64 = base64.b64encode(image_bytes).decode("utf-8")
|
188 |
+
# description = get_smolvlm_caption(image, prompt="Give a brief Description")
|
189 |
+
# name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
|
190 |
+
|
191 |
+
def clean_caption_output(raw_output: str, prompt: str) -> str:
|
192 |
+
answer = raw_output.replace(prompt, '').replace(
|
193 |
+
"<image>", '').strip(" :-\n")
|
194 |
+
return answer
|
195 |
+
|
196 |
+
prompt_description = "Give a brief Captioning."
|
197 |
+
prompt_name = "give a short name caption of this Image."
|
198 |
+
|
199 |
+
content1 = [
|
200 |
+
{
|
201 |
+
"type": "text",
|
202 |
+
"text": f"{prompt_description}"
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"type": "image_url",
|
206 |
+
"image_url": {
|
207 |
+
"url": f"data:image/jpeg;base64,{img_base64}"
|
208 |
+
}
|
209 |
+
}
|
210 |
+
]
|
211 |
+
response1 = agent.invoke(
|
212 |
+
{"messages": [{"role": "user", "content": content1}]})
|
213 |
+
print(response1)
|
214 |
+
description = response1["messages"][-1].content
|
215 |
+
|
216 |
+
content2 = [
|
217 |
+
{
|
218 |
+
"type": "text",
|
219 |
+
"text": f"{prompt_name}"
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"type": "image_url",
|
223 |
+
"image_url": {
|
224 |
+
"url": f"data:image/jpeg;base64,{img_base64}"
|
225 |
+
}
|
226 |
+
}
|
227 |
+
]
|
228 |
+
|
229 |
+
response2 = agent.invoke(
|
230 |
+
{"messages": [{"role": "user", "content": content2}]})
|
231 |
+
print(response2)
|
232 |
+
name = response2["messages"][-1].content
|
233 |
+
|
234 |
+
# raw_description = get_smolvlm_caption(image, prompt=prompt_description)
|
235 |
+
# raw_name = get_smolvlm_caption(image, prompt=prompt_name)
|
236 |
+
|
237 |
+
# description = clean_caption_output(raw_description, prompt_description)
|
238 |
+
# name = clean_caption_output(raw_name, prompt_name)
|
239 |
+
|
240 |
+
manipulated_json[f"Sprite {sprite_count}"] = {
|
241 |
+
"name": name,
|
242 |
+
"base64": element["metadata"]["image_base64"],
|
243 |
+
"file-path": pdf_dir_path,
|
244 |
+
"description": description
|
245 |
+
}
|
246 |
+
sprite_count += 1
|
247 |
+
except Exception as e:
|
248 |
+
print(f"⚠️ Error processing Sprite {i+1}: {str(e)}")
|
249 |
+
|
250 |
+
# Save manipulated JSON
|
251 |
+
with open(final_json_path, "w") as sprite_file:
|
252 |
+
json.dump(manipulated_json, sprite_file, indent=4)
|
253 |
+
|
254 |
+
print(f"✅ Manipulated sprite JSON saved: {final_json_path}")
|
255 |
+
return final_json_path, manipulated_json
|
256 |
+
|
257 |
+
except Exception as e:
|
258 |
+
raise RuntimeError(f"❌ Error in extract_images_from_pdf: {str(e)}")
|
259 |
+
|
260 |
+
|
261 |
+
def similarity_matching(input_json_path: str) -> str:
|
262 |
+
import uuid
|
263 |
+
import shutil
|
264 |
+
import tempfile
|
265 |
+
from langchain_experimental.open_clip.open_clip import OpenCLIPEmbeddings
|
266 |
+
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
|
267 |
+
from io import BytesIO
|
268 |
+
|
269 |
+
logger.info("🔍 Running similarity matching...")
|
270 |
+
|
271 |
+
# ============================== #
|
272 |
+
# DEFINE PATHS #
|
273 |
+
# ============================== #
|
274 |
+
backdrop_images_path = os.getenv("BACKDROP_FOLDER_PATH", "/app/reference/backdrops")
|
275 |
+
sprite_images_path = os.getenv("SPRITE_FOLDER_PATH", "/app/reference/sprites")
|
276 |
+
image_dirs = [backdrop_images_path, sprite_images_path]
|
277 |
+
|
278 |
+
# ================================================= #
|
279 |
+
# Generate Random UUID for project folder name #
|
280 |
+
# ================================================= #
|
281 |
+
random_id = str(uuid.uuid4()).replace('-', '')
|
282 |
+
project_folder = os.path.join("outputs", f"project_{random_id}")
|
283 |
+
|
284 |
+
# =========================================================================== #
|
285 |
+
# Create empty json in project_{random_id} folder #
|
286 |
+
# =========================================================================== #
|
287 |
+
os.makedirs(project_folder, exist_ok=True)
|
288 |
+
project_json_path = os.path.join(project_folder, "project.json")
|
289 |
+
|
290 |
+
# ============================== #
|
291 |
+
# READ SPRITE METADATA #
|
292 |
+
# ============================== #
|
293 |
+
with open(input_json_path, 'r') as f:
|
294 |
+
sprites_data = json.load(f)
|
295 |
+
|
296 |
+
sprite_ids, texts, sprite_base64 = [], [], []
|
297 |
+
for sid, sprite in sprites_data.items():
|
298 |
+
sprite_ids.append(sid)
|
299 |
+
texts.append(
|
300 |
+
"This is " + sprite.get("description", sprite.get("name", "")))
|
301 |
+
sprite_base64.append(sprite["base64"])
|
302 |
+
|
303 |
+
# ============================== #
|
304 |
+
# INITIALIZE CLIP EMBEDDER #
|
305 |
+
# ============================== #
|
306 |
+
clip_embd = OpenCLIPEmbeddings()
|
307 |
+
|
308 |
+
# ========================================= #
|
309 |
+
# Walk folders to collect all image paths #
|
310 |
+
# ========================================= #
|
311 |
+
folder_image_paths = []
|
312 |
+
for image_dir in image_dirs:
|
313 |
+
for root, _, files in os.walk(image_dir):
|
314 |
+
for fname in files:
|
315 |
+
if fname.lower().endswith((".png", ".jpg", ".jpeg")):
|
316 |
+
folder_image_paths.append(os.path.join(root, fname))
|
317 |
+
|
318 |
+
# ============================== #
|
319 |
+
# EMBED FOLDER IMAGES (REF) #
|
320 |
+
# ============================== #
|
321 |
+
img_features = clip_embd.embed_image(folder_image_paths)
|
322 |
+
|
323 |
+
# ============================== #
|
324 |
+
# Store image embeddings #
|
325 |
+
# ============================== #
|
326 |
+
embedding_json = []
|
327 |
+
for i, path in enumerate(folder_image_paths):
|
328 |
+
embedding_json.append({
|
329 |
+
"name":os.path.basename(path),
|
330 |
+
"file-path": path,
|
331 |
+
"embeddings": list(img_features[i])
|
332 |
+
})
|
333 |
+
|
334 |
+
# Save to embeddings.json
|
335 |
+
with open(f"{OUTPUT_FOLDER}/embeddings.json", "w") as f:
|
336 |
+
json.dump(embedding_json, f, indent=2)
|
337 |
+
|
338 |
+
# ============================== #
|
339 |
+
# DECODE SPRITE IMAGES #
|
340 |
+
# ============================== #
|
341 |
+
temp_dir = tempfile.mkdtemp()
|
342 |
+
sprite_image_paths = []
|
343 |
+
for idx, b64 in enumerate(sprite_base64):
|
344 |
+
image_data = base64.b64decode(b64.split(",")[-1])
|
345 |
+
img = Image.open(BytesIO(image_data)).convert("RGB")
|
346 |
+
temp_path = os.path.join(temp_dir, f"sprite_{idx}.png")
|
347 |
+
img.save(temp_path)
|
348 |
+
sprite_image_paths.append(temp_path)
|
349 |
+
|
350 |
+
# ============================== #
|
351 |
+
# EMBED SPRITE IMAGES #
|
352 |
+
# ============================== #
|
353 |
+
sprite_features = clip_embd.embed_image(sprite_image_paths)
|
354 |
+
|
355 |
+
# ============================== #
|
356 |
+
# COMPUTE SIMILARITIES #
|
357 |
+
# ============================== #
|
358 |
+
# with open(f"{OUTPUT_FOLDER}/embeddings.json", "r") as f:
|
359 |
+
# embedding_json = json.load(f)
|
360 |
+
|
361 |
+
img_matrix = np.array([img["embeddings"] for img in embedding_json])
|
362 |
+
sprite_matrix = np.array(sprite_features)
|
363 |
+
|
364 |
+
similarity = np.matmul(sprite_matrix, img_matrix.T)
|
365 |
+
most_similar_indices = np.argmax(similarity, axis=1)
|
366 |
+
|
367 |
+
# ============= Match and copy ================
|
368 |
+
project_data, backdrop_data = [], []
|
369 |
+
copied_folders = set()
|
370 |
+
for sprite_idx, matched_idx in enumerate(most_similar_indices):
|
371 |
+
matched_entry = embedding_json[matched_idx]
|
372 |
+
# matched_image_path = os.path.normpath(folder_image_paths[matched_idx])
|
373 |
+
matched_image_path = os.path.normpath(matched_entry["file-path"])
|
374 |
+
matched_folder = os.path.dirname(matched_image_path)
|
375 |
+
if matched_folder in copied_folders:
|
376 |
+
continue
|
377 |
+
copied_folders.add(matched_folder)
|
378 |
+
|
379 |
+
# Sprite
|
380 |
+
sprite_json_path = os.path.join(matched_folder, 'sprite.json')
|
381 |
+
if os.path.exists(sprite_json_path):
|
382 |
+
with open(sprite_json_path, 'r') as f:
|
383 |
+
sprite_data = json.load(f)
|
384 |
+
project_data.append(sprite_data)
|
385 |
+
|
386 |
+
for fname in os.listdir(matched_folder):
|
387 |
+
if fname not in {os.path.basename(matched_image_path), 'sprite.json'}:
|
388 |
+
shutil.copy2(os.path.join(
|
389 |
+
matched_folder, fname), project_folder)
|
390 |
+
|
391 |
+
# Backdrop
|
392 |
+
if matched_image_path.startswith(os.path.normpath(backdrop_images_path)):
|
393 |
+
backdrop_json_path = os.path.join(matched_folder, 'project.json')
|
394 |
+
if os.path.exists(backdrop_json_path):
|
395 |
+
with open(backdrop_json_path, 'r') as f:
|
396 |
+
backdrop_json_data = json.load(f)
|
397 |
+
for target in backdrop_json_data.get("targets", []):
|
398 |
+
if target.get("isStage"):
|
399 |
+
backdrop_data.append(target)
|
400 |
+
for fname in os.listdir(matched_folder):
|
401 |
+
if fname not in {os.path.basename(matched_image_path), 'project.json'}:
|
402 |
+
shutil.copy2(os.path.join(
|
403 |
+
matched_folder, fname), project_folder)
|
404 |
+
|
405 |
+
# Merge JSON structure
|
406 |
+
final_project = {
|
407 |
+
"targets": [],
|
408 |
+
"monitors": [],
|
409 |
+
"extensions": [],
|
410 |
+
"meta": {
|
411 |
+
"semver": "3.0.0",
|
412 |
+
"vm": "11.3.0",
|
413 |
+
"agent": "OpenAI ScratchVision Agent"
|
414 |
+
}
|
415 |
+
}
|
416 |
+
|
417 |
+
for sprite in project_data:
|
418 |
+
if not sprite.get("isStage", False):
|
419 |
+
final_project["targets"].append(sprite)
|
420 |
+
|
421 |
+
if backdrop_data:
|
422 |
+
all_costumes, sounds = [], []
|
423 |
+
for idx, bd in enumerate(backdrop_data):
|
424 |
+
all_costumes.extend(bd.get("costumes", []))
|
425 |
+
if idx == 0 and "sounds" in bd:
|
426 |
+
sounds = bd["sounds"]
|
427 |
+
final_project["targets"].append({
|
428 |
+
"isStage": True,
|
429 |
+
"name": "Stage",
|
430 |
+
"variables": {},
|
431 |
+
"lists": {},
|
432 |
+
"broadcasts": {},
|
433 |
+
"blocks": {},
|
434 |
+
"comments": {},
|
435 |
+
"currentCostume": 1 if len(all_costumes) > 1 else 0,
|
436 |
+
"costumes": all_costumes,
|
437 |
+
"sounds": sounds,
|
438 |
+
"volume": 100,
|
439 |
+
"layerOrder": 0,
|
440 |
+
"tempo": 60,
|
441 |
+
"videoTransparency": 50,
|
442 |
+
"videoState": "on",
|
443 |
+
"textToSpeechLanguage": None
|
444 |
+
})
|
445 |
+
|
446 |
+
with open(project_json_path, 'w') as f:
|
447 |
+
json.dump(final_project, f, indent=2)
|
448 |
+
|
449 |
+
logger.info(f"🎉 Final project saved: {project_json_path}")
|
450 |
+
return project_json_path
|
451 |
+
|
452 |
+
|
453 |
+
@app.route('/')
|
454 |
+
def index():
|
455 |
+
return render_template('app_index.html')
|
456 |
+
|
457 |
+
# API endpoint
|
458 |
+
|
459 |
+
|
460 |
+
@app.route('/process_pdf', methods=['POST'])
|
461 |
+
def process_pdf():
|
462 |
+
try:
|
463 |
+
logger.info("Received request to process PDF.")
|
464 |
+
if 'pdf_file' not in request.files:
|
465 |
+
logger.warning("No PDF file found in request.")
|
466 |
+
return jsonify({"error": "Missing PDF file in form-data with key 'pdf_file'"}), 400
|
467 |
+
|
468 |
+
pdf_file = request.files['pdf_file']
|
469 |
+
if pdf_file.filename == '':
|
470 |
+
return jsonify({"error": "Empty filename"}), 400
|
471 |
+
|
472 |
+
# Save the uploaded PDF temporarily
|
473 |
+
filename = secure_filename(pdf_file.filename)
|
474 |
+
temp_dir = tempfile.mkdtemp()
|
475 |
+
saved_pdf_path = os.path.join(temp_dir, filename)
|
476 |
+
pdf_file.save(saved_pdf_path)
|
477 |
+
|
478 |
+
logger.info(f"Saved uploaded PDF to: {saved_pdf_path}")
|
479 |
+
|
480 |
+
# Extract & process
|
481 |
+
json_path = None
|
482 |
+
output_path, result = extract_images_from_pdf(
|
483 |
+
saved_pdf_path, json_path)
|
484 |
+
|
485 |
+
project_output = similarity_matching(output_path)
|
486 |
+
logger.info("Received request to process PDF.")
|
487 |
+
|
488 |
+
return jsonify({
|
489 |
+
"message": "✅ PDF processed successfully",
|
490 |
+
"output_json": output_path,
|
491 |
+
"sprites": result,
|
492 |
+
"project_output_json": project_output
|
493 |
+
})
|
494 |
+
except Exception as e:
|
495 |
+
logger.exception("❌ Failed to process PDF")
|
496 |
+
return jsonify({"error": f"❌ Failed to process PDF: {str(e)}"}), 500
|
497 |
+
|
498 |
+
|
499 |
+
if __name__ == '__main__':
|
500 |
+
app.run(host='0.0.0.0', port=7860, debug=True)
|