prthm11 commited on
Commit
1c58aa5
·
verified ·
1 Parent(s): f566054

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -37,3 +37,4 @@ reference/Backdrops/beach_malibu.sb3/050615fe992a00d6af0e664e497ebf53.png filter
37
  reference/Backdrops/castle2.sb3/951765ee7f7370f120c9df20b577c22f.png filter=lfs diff=lfs merge=lfs -text
38
  reference/Backdrops/hall.sb3/ea86ca30b346f27ca5faf1254f6a31e3.png filter=lfs diff=lfs merge=lfs -text
39
  reference/Backdrops/jungle.sb3/f4f908da19e2753f3ed679d7b37650ca.png filter=lfs diff=lfs merge=lfs -text
 
 
37
  reference/Backdrops/castle2.sb3/951765ee7f7370f120c9df20b577c22f.png filter=lfs diff=lfs merge=lfs -text
38
  reference/Backdrops/hall.sb3/ea86ca30b346f27ca5faf1254f6a31e3.png filter=lfs diff=lfs merge=lfs -text
39
  reference/Backdrops/jungle.sb3/f4f908da19e2753f3ed679d7b37650ca.png filter=lfs diff=lfs merge=lfs -text
40
+ AutoregressionSchema.gif filter=lfs diff=lfs merge=lfs -text
AutoregressionSchema.gif ADDED

Git LFS Details

  • SHA256: 53a020cfddcd2f7b93c048b98335f38535a398caf2c7b3c97a7c1c1bcf96e13d
  • Pointer size: 132 Bytes
  • Size of remote file: 1.63 MB
app.py ADDED
The diff for this file is too large to render. See raw diff
 
app2.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import io
3
+ import base64
4
+ import os, re
5
+ from langchain_google_vertexai.vision_models import VertexAIVisualQnAChat
6
+ from PIL import Image
7
+ from langchain_core.messages import HumanMessage, SystemMessage
8
+ from langchain_groq import ChatGroq
9
+ from dotenv import load_dotenv
10
+ from groq import Groq
11
+ from flask import Flask, jsonify
12
+ from langgraph.prebuilt import create_react_agent
13
+
14
+ load_dotenv()
15
+ # os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
16
+ groq_api_key = os.getenv("GROQ_API_KEY")
17
+
18
+ app = Flask(__name__)
19
+
20
+ '''#initialize groq client
21
+ client = Groq(api_key=groq_api_key)
22
+ print(f"client:{client}") '''
23
+
24
+ static_image_path = os.path.join("images", "page2_print.jfif")
25
+
26
+ llm = ChatGroq(
27
+ model="meta-llama/llama-4-maverick-17b-128e-instruct",
28
+ temperature=0,
29
+ max_tokens=None,
30
+ )
31
+
32
+ @app.route("/", methods=["GET"])
33
+ def analyze_static_image():
34
+ if not os.path.exists(static_image_path):
35
+ return jsonify({"error": f"Image not found"})
36
+
37
+ # Load image and convert to base64 string
38
+ image_path = r"images\page2_print.jfif"
39
+ with open(image_path, "rb") as image_file:
40
+ image_bytes = image_file.read()
41
+ img_base64 = base64.b64encode(image_bytes).decode("utf-8")
42
+
43
+ # # Construct image content block
44
+ # image_content_block = {
45
+ # "type": "image_url",
46
+ # "image_url": {
47
+ # # "url": f"data:image/jpeg;base64,{image_data_url}"
48
+ # "url": f"data:image/jpeg;base64,{img_base64}"
49
+ # }
50
+ # }
51
+
52
+ # SET A SYSTEM PROMPT
53
+ system_prompt = """
54
+ You are an expert in visual scene understanding.
55
+ Your Job is to analyze an image and respond with structured json like This :
56
+ - Any number of "Sprites": These refer to distinct characters, animals, or objects in the image that are **in front of the background** (e.g., cat, ball, crab, person, etc.).
57
+ {
58
+ "Sprite 1": {
59
+ "name": "Cat",
60
+ "description":"An orange cartoon cat with a cheerful expression, shown jumping playfully."
61
+ },
62
+ "Backdrop":{
63
+ "name":"Beach Scene",
64
+ "description":"A serene beach with sand, blue water, and a clear sky."
65
+ }
66
+ }
67
+ Guidelines:
68
+ - Focus only the images given in Square Shape.
69
+ - Don't Consider Blank areas in Image as "Backdrop".
70
+ - Do NOT classify the background scene as a sprite.
71
+ - All characters or objects placed in the foreground should be "Sprites".
72
+ - Use 'Sprite 1', 'Sprite 2', etc. for character or figures.
73
+ - Use 'Backdrop' for environmental setting or Background behind Sprite.
74
+ - Don't include generic summary or explanation outside the fields.
75
+ Return only valid JSON.
76
+ """
77
+
78
+ # Compose message using LangChain's HumanMessage
79
+ content = [
80
+ {
81
+ "type": "text",
82
+ "text": "Analyze the image and describe the backdrops and characters as per instruction."
83
+ },
84
+ {
85
+ "type": "image_url",
86
+ "image_url": {
87
+ "url": f"data:image/jpeg;base64,{img_base64}"
88
+ }
89
+ }
90
+ ]
91
+
92
+ agent = create_react_agent(
93
+ model = llm,
94
+ tools = [],
95
+ prompt = system_prompt
96
+ )
97
+
98
+ # agent_executor = AgentExecutor(agent=agent, tools=[])
99
+ # Pass the human prompt + system message
100
+ # messages = [system_prompt, *human_prompt]
101
+ # messages = [system_prompt, *human_prompt]
102
+
103
+ # call the LLM
104
+ try:
105
+ # response = llm.invoke(messages)
106
+ # response = agent.invoke({"input":human_prompt})
107
+ response = agent.invoke({"messages": [{"role": "user", "content":content}]})
108
+ print(response)
109
+
110
+ raw_response = response["messages"][-1].content
111
+
112
+ cleaned_json_str = re.sub(r"^```json\s*|\s*```$", "", raw_response.strip(), flags=re.DOTALL)
113
+ try:
114
+ detected_info = json.loads(cleaned_json_str)
115
+ except json.JSONDecodeError as e:
116
+ # If parsing fails, fallback to raw string or handle error
117
+ print("JSON parsing error:", e)
118
+ detected_info = cleaned_json_str # or handle as needed
119
+ # Extract the answer text from the response
120
+ # detected_info = response.content
121
+ # detected_info = raw_response
122
+ except Exception as e:
123
+ return jsonify({"error": str(e)}), 500
124
+
125
+ # Save the detected information to a JSON file
126
+ result = {
127
+ "image_path": image_path,
128
+ "detected_info": detected_info,
129
+ }
130
+
131
+ # Save JSON result
132
+ with open("detected_image_info.json", "w") as f:
133
+ json.dump(result, f, indent=4)
134
+ print("Detection results saved to detected_image_info.json")
135
+ return jsonify(result)
136
+
137
+ if __name__ == "__main__":
138
+ app.run(debug=True)
139
+
140
+
141
+ '''#build the chat messages
142
+ messages = [
143
+ {
144
+ "role":"system",
145
+ "content":"you are an expert image analyzer. Describe backdrops and sprite/character in the image."
146
+ },
147
+ {
148
+ "role":"user",
149
+ "content":[
150
+ {
151
+ "type":"text",
152
+ "text":"Describe image in detail. What backdrops and characters are present ?"
153
+ },
154
+ image_content_block
155
+ ]
156
+ }
157
+ ]'''
158
+
159
+ '''# create completion with Groq
160
+ response = client.chat.completions.create(
161
+ model = "meta-llama/llama-4-maverick-17b-128e-instruct",
162
+ messages=messages,
163
+ temperature=0,
164
+ max_tokens=1024,
165
+ top_p=1,
166
+ stream=False
167
+ )
168
+ print(f"\n\n========RESPONSE CHOICES : {response}\n\n")
169
+ # extract the result
170
+ detected_info = response.choices[0].message.content
171
+ print(f"DETECTED_INFO : {detected_info}")
172
+
173
+
174
+ # save output to json
175
+ output_data = {
176
+ "image_path":image_path,
177
+ "detected_info":detected_info
178
+ }
179
+ print(f"output_data : {output_data}")
180
+
181
+ with open("detected_image_info.json", "w") as f:
182
+ json.dump(output_data, f, indent=4)
183
+
184
+ print("✅ Detection results saved to detected_image_info.json")'''
185
+
186
+
187
+ # # Define the question to detect objects and characters in the image
188
+ # question = "What objects and characters are present in this image?"
189
+
190
+ # messages = [HumanMessage(content=[image_content_block, question])]
191
+ # print(messages)
192
+ # Invoke the model with the image and question
193
+ # response = llm.invoke({"image": image_content_block, "question": question})
app2_BLIP.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import io
3
+ import base64
4
+ import os, re
5
+ from langchain_google_vertexai.vision_models import VertexAIVisualQnAChat
6
+ from PIL import Image
7
+ from langchain_core.messages import HumanMessage, SystemMessage
8
+ from langchain_groq import ChatGroq
9
+ from dotenv import load_dotenv
10
+ from groq import Groq
11
+ from flask import Flask, jsonify
12
+ from langgraph.prebuilt import create_react_agent
13
+
14
+ from langchain_community.llms import huggingface_pipeline
15
+ from transformers import BlipProcessor, BlipForConditionalGeneration
16
+ import torch
17
+ from langchain_core.prompts import PromptTemplate
18
+
19
+ load_dotenv()
20
+ # os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
21
+ # groq_api_key = os.getenv("GROQ_API_KEY")
22
+
23
+ app = Flask(__name__)
24
+
25
+ static_image_path = os.path.join("images", "page2_print.jfif")
26
+
27
+ # llm = ChatGroq(
28
+ # model="meta-llama/llama-4-maverick-17b-128e-instruct",
29
+ # temperature=0,
30
+ # max_tokens=None,
31
+ # )
32
+
33
+ processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
34
+ model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cpu")
35
+
36
+ def analyze_with_blip(image_pil):
37
+ inputs = processor(image_pil, return_tensors="pt").to("cpu")
38
+ out = model.generate(**inputs, max_new_tokens=100)
39
+ caption = processor.decode(out[0], skip_special_tokens=True)
40
+ return caption
41
+
42
+ @app.route("/", methods=["GET"])
43
+ def analyze_static_image():
44
+ if not os.path.exists(static_image_path):
45
+ return jsonify({"error": f"Image not found"})
46
+
47
+ # Load image and convert to base64 string
48
+ image_path = r"images\page2_print.jfif"
49
+ with open(image_path, "rb") as image_file:
50
+ image_bytes = image_file.read()
51
+ img_base64 = base64.b64encode(image_bytes).decode("utf-8")
52
+
53
+ # SET A SYSTEM PROMPT
54
+ system_prompt = """
55
+ You are an expert in visual scene understanding.
56
+ Your Job is to analyze an image and respond with structured json like This :
57
+ - Any number of "Sprites": These refer to distinct characters, animals, or objects in the image that are **in front of the background** (e.g., cat, ball, crab, person, etc.).
58
+ {
59
+ "Sprite 1": {
60
+ "name": "Cat",
61
+ "description":"An orange cartoon cat with a cheerful expression, shown jumping playfully."
62
+ },
63
+ "Backdrop":{
64
+ "name":"Beach Scene",
65
+ "description":"A serene beach with sand, blue water, and a clear sky."
66
+ }
67
+ }
68
+ Guidelines:
69
+ - Focus only the images given in Square Shape.
70
+ - Don't Consider Blank areas in Image as "Backdrop".
71
+ - Do NOT classify the background scene as a sprite.
72
+ - All characters or objects placed in the foreground should be "Sprites".
73
+ - Use 'Sprite 1', 'Sprite 2', etc. for character or figures.
74
+ - Use 'Backdrop' for environmental setting or Background behind Sprite.
75
+ - Don't include generic summary or explanation outside the fields.
76
+ Return only valid JSON.
77
+ """
78
+
79
+ # Compose message using LangChain's HumanMessage
80
+ content = [
81
+ {
82
+ "type": "text",
83
+ "text": "Analyze the image and describe the backdrops and characters as per instruction."
84
+ },
85
+ {
86
+ "type": "image_url",
87
+ "image_url": {
88
+ "url": f"data:image/jpeg;base64,{img_base64}"
89
+ }
90
+ }
91
+ ]
92
+
93
+ agent = create_react_agent(
94
+ model = llm,
95
+ tools = [],
96
+ prompt = system_prompt
97
+ )
98
+
99
+ # call the LLM
100
+ try:
101
+ # response = llm.invoke(messages)
102
+ # response = agent.invoke({"input":human_prompt})
103
+ response = agent.invoke({"messages": [{"role": "user", "content":content}]})
104
+ print(response)
105
+
106
+ raw_response = response["messages"][-1].content
107
+
108
+ cleaned_json_str = re.sub(r"^```json\s*|\s*```$", "", raw_response.strip(), flags=re.DOTALL)
109
+ try:
110
+ detected_info = json.loads(cleaned_json_str)
111
+ except json.JSONDecodeError as e:
112
+ # If parsing fails, fallback to raw string or handle error
113
+ print("JSON parsing error:", e)
114
+ detected_info = cleaned_json_str # or handle as needed
115
+ except Exception as e:
116
+ return jsonify({"error": str(e)}), 500
117
+
118
+ # Save the detected information to a JSON file
119
+ result = {
120
+ "image_path": image_path,
121
+ "detected_info": detected_info,
122
+ }
123
+
124
+ # Save JSON result
125
+ with open("detected_image_info.json", "w") as f:
126
+ json.dump(result, f, indent=4)
127
+ print("Detection results saved to detected_image_info.json")
128
+ return jsonify(result)
129
+
130
+ if __name__ == "__main__":
131
+ app.run(debug=True)
app_BLIP_processing.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import BlipProcessor, BlipForConditionalGeneration
2
+ from langchain.chains import LLMChain
3
+ from langchain.schema import BaseOutputParser
4
+ from PIL import Image
5
+ import torch
6
+
7
+ # Define a simple Output Parser
8
+ class CaptionParser(BaseOutputParser):
9
+ def parse(self, text: str):
10
+ return text.strip()
11
+
12
+ # LangChain-compatible VLM wrapper
13
+ class BLIPImageCaptioning:
14
+ def __init__(self):
15
+ self.device = "cuda" if torch.cuda.is_available() else "cpu"
16
+ self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base", use_auth_token=None)
17
+ self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base", use_auth_token=None).to(self.device)
18
+
19
+ def predict(self, image_path: str) -> str:
20
+ raw_image = Image.open(image_path).convert('RGB')
21
+ inputs = self.processor(raw_image, return_tensors="pt").to(self.device)
22
+ out = self.model.generate(**inputs)
23
+ caption = self.processor.decode(out[0], skip_special_tokens=True)
24
+ return caption
25
+
26
+ # Use the BLIP model via LangChain
27
+ class ImageCaptionChain:
28
+ def __init__(self):
29
+ self.captioner = BLIPImageCaptioning()
30
+ self.output_parser = CaptionParser()
31
+
32
+ def run(self, image_path: str):
33
+ caption = self.captioner.predict(image_path)
34
+ return self.output_parser.parse(caption)
35
+
36
+ # ----------- Run Example -------------
37
+ if __name__ == "__main__":
38
+ image_path = r"images\sample.jpg" # Replace with your image path
39
+ chain = ImageCaptionChain()
40
+ caption = chain.run(image_path)
41
+ print("Generated Caption:", caption)
app_main copy 2.py ADDED
@@ -0,0 +1,1248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, request, jsonify
2
+ import json,base64,io,os,logging,re
3
+ import numpy as np
4
+ from unstructured.partition.pdf import partition_pdf
5
+ from PIL import Image
6
+ # from imutils.perspective import four_point_transform
7
+ from dotenv import load_dotenv
8
+ import pytesseract
9
+ # from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
10
+ from langchain_community.document_loaders.image_captions import ImageCaptionLoader
11
+ from werkzeug.utils import secure_filename
12
+ from langchain_groq import ChatGroq
13
+ from langgraph.prebuilt import create_react_agent
14
+ from pdf2image import convert_from_bytes #convert_from_path,
15
+ import asyncio
16
+ from concurrent.futures import ThreadPoolExecutor
17
+ from pdf2image.exceptions import PDFInfoNotInstalledError
18
+ from typing import Dict, TypedDict, Optional, Any
19
+ from langgraph.graph import StateGraph, END
20
+ import uuid
21
+ import shutil, time, functools
22
+ from langchain_experimental.open_clip.open_clip import OpenCLIPEmbeddings
23
+ # from matplotlib.offsetbox import OffsetImage, AnnotationBbox
24
+ from io import BytesIO
25
+
26
+ # https://prthm11-Scratch_vlm_v1.hf.space/
27
+ # https://huggingface.co/spaces/prthm11/Scratch_vlm_v1
28
+ # https://prthm11-scratch-vlm-v1.hf.space/process_pdf
29
+
30
+ # def log_execution_time(func):
31
+ # @functools.wraps(func)
32
+ # def wrapper(*args, **kwargs):
33
+ # start_time = time.time()
34
+ # result = func(*args, **kwargs)
35
+ # end_time = time.time()
36
+ # logger.info(f"⏱ {func.__name__} executed in {end_time - start_time:.2f} seconds")
37
+ # return result
38
+ # return wrapper
39
+
40
+ # ============================== #
41
+ # INITIALIZE CLIP EMBEDDER #
42
+ # ============================== #
43
+ clip_embd = OpenCLIPEmbeddings()
44
+
45
+ # Configure logging
46
+ logging.basicConfig(
47
+ level=logging.DEBUG, # Use INFO or ERROR in production
48
+ format="%(asctime)s [%(levelname)s] %(message)s",
49
+ handlers=[
50
+ logging.FileHandler("app.log"),
51
+ logging.StreamHandler()
52
+ ]
53
+ )
54
+
55
+ logger = logging.getLogger(__name__)
56
+
57
+ load_dotenv()
58
+ # os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
59
+ groq_api_key = os.getenv("GROQ_API_KEY")
60
+
61
+ llm = ChatGroq(
62
+ # model="meta-llama/llama-4-scout-17b-16e-instruct",
63
+ model = "meta-llama/llama-4-maverick-17b-128e-instruct",
64
+ temperature=0,
65
+ max_tokens=None,
66
+ )
67
+
68
+ app = Flask(__name__)
69
+
70
+ pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
71
+ poppler_path = r"C:\poppler-23.11.0\Library\bin"
72
+
73
+ count = 0
74
+
75
+ OUTPUT_FOLDER = "OUTPUTS"
76
+ DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "DETECTED_IMAGE")
77
+ IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
78
+ JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
79
+
80
+ for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
81
+ os.makedirs(path, exist_ok=True)
82
+
83
+ # class GameState(TypedDict):
84
+ # image: str
85
+ # pseudo_node: Optional[Dict]
86
+
87
+ # # Refined SYSTEM_PROMPT with more explicit Scratch JSON rules, especially for variables
88
+ # SYSTEM_PROMPT = """
89
+ # You are an expert AI assistant named GameScratchAgent, specialized in generating and modifying Scratch-VM 3.x game project JSON.
90
+ # Your core task is to process game descriptions and existing Scratch JSON structures, then produce or update JSON segments accurately.
91
+ # You possess deep knowledge of Scratch 3.0 project schema, informed by comprehensive reference materials. When generating or modifying the `blocks` section, pay extremely close attention to the following:
92
+
93
+ # **Scratch Project JSON Schema Rules:**
94
+
95
+ # 1. **Target Structure (`project.json`'s `targets` array):**
96
+ # * Each object in the `targets` array represents a Stage or a Sprite.
97
+ # * `isStage`: A boolean indicating if the target is the Stage (`true`) or a Sprite (`false`).
98
+ # * `name`: The name of the Stage (e.g., `"Stage"`) or the Sprite (e.g., `"Cat"`). This property replaces `objName` found in older Scratch versions.
99
+ # * `variables` dictionary: This dictionary maps unique variable IDs to arrays `[variable_name, initial_value, isCloudVariable?]`.
100
+ # * `variable_name`: The user-defined name of the variable.
101
+ # * `initial_value`: The variable's initial value, which can be a number or a string.
102
+ # * `isCloudVariable?`: (Optional) A boolean indicating if it's a cloud variable (`true`) or a local variable (`false` or absent for regular variables).
103
+ # * Example: `"myVarId123": ["score", 0]`, `"cloudVarId456": ["☁ High Score", "54", true]`
104
+ # * `lists` dictionary: This dictionary maps unique list IDs to arrays `[list_name, [item1, item2, ...]]`.
105
+ # * Example: `"myListId789": ["my list", ["apple", "banana"]]`
106
+ # * `broadcasts` dictionary: This dictionary maps unique broadcast IDs to their names.
107
+ # * Example: `"myBroadcastId": "Game Over"`
108
+ # * `blocks` dictionary: This dictionary contains all the blocks belonging to this target. Keys are block IDs, values are block objects.
109
+
110
+ # 2. **Block Structure (within a `target`'s `blocks` dictionary):**
111
+ # * Every block object must have the following core properties:
112
+ # * [cite_start]`opcode`: A unique internal identifier for the block's specific functionality (e.g., `"motion_movesteps"`, `"event_whenflagclicked"`)[cite: 31, 18, 439, 452].
113
+ # * `parent`: The ID of the block directly above it in the script stack (or `null` for a top-level block).
114
+ # * `next`: The ID of the block directly below it in the script stack (or `null` for the end of a stack).
115
+ # * `inputs`: An object defining values or blocks plugged into the block's input slots. Values are **arrays**.
116
+ # * `fields`: An object defining dropdown menu selections or direct internal values within the block. Values are **arrays**.
117
+ # * `shadow`: `true` if it's a shadow block (e.g., a default number input that can be replaced by another block), `false` otherwise.
118
+ # * `topLevel`: `true` if it's a hat block or a standalone block (not connected to a parent), `false` otherwise.
119
+
120
+ # 3. **`inputs` Property Details (for blocks plugged into input slots):**
121
+ # * **Direct Block Connection (Reporter/Boolean block plugged in):**
122
+ # * Format: `"<INPUT_NAME>": [1, "<blockId_of_plugged_block>"]`
123
+ # * Example: `"CONDITION": [1, "someBooleanBlockId"]` (e.g., for an `if` block).
124
+ # * **Literal Value Input (Shadow block with a literal):**
125
+ # * Format: `"<INPUT_NAME>": [1, [<type_code>, "<value_string>"]]`
126
+ # * `type_code`: A numeric code representing the data type. Common codes include: `4` for number, `7` for string/text, `10` for string/message.
127
+ # * `value_string`: The literal value as a string.
128
+ # * Examples:
129
+ # * Number: `"STEPS": [1, [4, "10"]]` (for `move 10 steps` block).
130
+ # * String/Text: `"MESSAGE": [1, [7, "Hello"]]` (for `say Hello` block).
131
+ # * String/Message (common for text inputs): `"MESSAGE": [1, [10, "Hello!"]]` (for `say Hello! for 2 secs`).
132
+ # * **C-Block Substack (blocks within a loop or conditional):**
133
+ # * Format: `"<SUBSTACK_NAME>": [2, "<blockId_of_first_block_in_substack>"]`
134
+ # * Common `SUBSTACK_NAME` values are `SUBSTACK` (for `if`, `forever`, `repeat`) and `SUBSTACK2` (for `else` in `if else`).
135
+ # * Example: `"SUBSTACK": [2, "firstBlockInLoopId"]`
136
+
137
+ # 4. **`fields` Property Details (for dropdowns or direct internal values):**
138
+ # * Used for dropdown menus, variable names, list names, or other static selections directly within the block.
139
+ # * Format: `"<FIELD_NAME>": ["<selected_value>", null]`
140
+ # * Examples:
141
+ # * Dropdown: `"KEY_OPTION": ["space", null]` (for `when space key pressed`).
142
+ # * Variable Name: `"VARIABLE": ["score", null]` (for `set score to 0`).
143
+ # * Direction (specific motion block): `"FORWARD_BACKWARD": ["forward", null]` (for `go forward layers`).
144
+
145
+ # 5. **Unique IDs:**
146
+ # * All block IDs, variable IDs, and list IDs must be unique strings (e.g., "myBlock123", "myVarId456", "myListId789"). Do NOT use placeholder strings like "block_id_here".
147
+
148
+ # 6. **No Nested `blocks` Dictionary:**
149
+ # * The `blocks` dictionary should only appear once per `target` (sprite/stage). Do NOT nest a `blocks` dictionary inside an individual block definition. Blocks that are part of a substack are linked via the `SUBSTACK` input.
150
+
151
+ # 7. **Asset Properties (for Costumes/Sounds):**
152
+ # * `assetId`, `md5ext`, `bitmapResolution`, `rotationCenterX`/`rotationCenterY` should be correctly associated with costume and sound objects within the `costumes` and `sounds` arrays.
153
+
154
+ # **General Principles and Important Considerations:**
155
+ # * **Backward Compatibility:** Adhere strictly to existing Scratch 3.0 opcodes and schema to ensure backward compatibility with older projects. [cite_start]Opcodes must remain consistent to prevent previously saved projects from failing to load or behaving unexpectedly[cite: 18, 19, 25, 65].
156
+ # * **Forgiving Inputs:** Recognize that Scratch is designed to be "forgiving in its interpretation of inputs." [cite_start]The Scratch VM handles potentially "invalid" inputs gracefully (e.g., converting a number to a string if expected, returning default values like zero or empty strings, or performing no action) rather than crashing[cite: 20, 21, 22, 38, 39, 41]. This implies that precise type matching for inputs might be handled internally by Scratch, allowing for some flexibility in how values are provided, but the agent should aim for the most common and logical type.
157
+ # """
158
+
159
+ # SYSTEM_PROMPT_JSON_CORRECTOR ="""
160
+ # You are an assistant that outputs JSON responses strictly following the given schema.
161
+ # If the JSON you produce has any formatting errors, missing required fields, or invalid structure, you must identify the problems and correct them.
162
+ # Always return only valid JSON that fully conforms to the schema below, enclosed in triple backticks (```), without any extra text or explanation.
163
+
164
+ # If you receive an invalid or incomplete JSON response, fix it by:
165
+ # - Adding any missing required fields with appropriate values.
166
+ # - Correcting syntax errors such as missing commas, brackets, or quotes.
167
+ # - Ensuring the JSON structure matches the schema exactly.
168
+
169
+ # Remember: Your output must be valid JSON only, ready to be parsed without errors.
170
+ # """
171
+ # # debugger and resolver agent for Scratch 3.0
172
+ # agent_json_resolver = create_react_agent(
173
+ # model=llm,
174
+ # tools=[], # No specific tools are defined here, but could be added later
175
+ # prompt=SYSTEM_PROMPT_JSON_CORRECTOR
176
+ # )
177
+
178
+ # # Helper function to load the block catalog from a JSON file
179
+ # def _load_block_catalog(file_path: str) -> Dict:
180
+ # """Loads the Scratch block catalog from a specified JSON file."""
181
+ # try:
182
+ # with open(file_path, 'r') as f:
183
+ # catalog = json.load(f)
184
+ # logger.info(f"Successfully loaded block catalog from {file_path}")
185
+ # return catalog
186
+ # except FileNotFoundError:
187
+ # logger.error(f"Error: Block catalog file not found at {file_path}")
188
+ # # Return an empty dict or raise an error, depending on desired behavior
189
+ # return {}
190
+ # except json.JSONDecodeError as e:
191
+ # logger.error(f"Error decoding JSON from {file_path}: {e}")
192
+ # return {}
193
+ # except Exception as e:
194
+ # logger.error(f"An unexpected error occurred while loading {file_path}: {e}")
195
+ # return {}
196
+
197
+ # # --- Global variable for the block catalog ---
198
+ # ALL_SCRATCH_BLOCKS_CATALOG = {}
199
+ # BLOCK_CATALOG_PATH = r"blocks\blocks.json" # Define the path to your JSON file
200
+ # HAT_BLOCKS_PATH = r"blocks\hat_blocks.json" # Path to the hat blocks JSON file
201
+ # STACK_BLOCKS_PATH = r"blocks\stack_blocks.json" # Path to the stack blocks JSON file
202
+ # REPORTER_BLOCKS_PATH = r"blocks\reporter_blocks.json" # Path to the reporter blocks JSON file
203
+ # BOOLEAN_BLOCKS_PATH = r"blocks\boolean_blocks.json" # Path to the boolean blocks JSON file
204
+ # C_BLOCKS_PATH = r"blocks\c_blocks.json" # Path to the C blocks JSON file
205
+ # CAP_BLOCKS_PATH = r"blocks\cap_blocks.json" # Path to the cap blocks JSON file
206
+
207
+ # # Load the block catalogs from their respective JSON files
208
+ # hat_block_data = _load_block_catalog(HAT_BLOCKS_PATH)
209
+ # hat_description = hat_block_data["description"]
210
+ # hat_opcodes_functionalities = os.path.join(HAT_BLOCKS_PATH, "hat_blocks.txt")
211
+
212
+ # boolean_block_data = _load_block_catalog(BOOLEAN_BLOCKS_PATH)
213
+ # boolean_description = boolean_block_data["description"]
214
+ # boolean_opcodes_functionalities = os.path.join(BOOLEAN_BLOCKS_PATH, "boolean_blocks.txt")
215
+
216
+ # c_block_data = _load_block_catalog(C_BLOCKS_PATH)
217
+ # c_description = c_block_data["description"]
218
+ # c_opcodes_functionalities = os.path.join(C_BLOCKS_PATH, "c_blocks.txt")
219
+
220
+
221
+ # cap_block_data = _load_block_catalog(CAP_BLOCKS_PATH)
222
+ # cap_description = cap_block_data["description"]
223
+ # cap_opcodes_functionalities = os.path.join(CAP_BLOCKS_PATH, "cap_blocks.txt")
224
+
225
+ # reporter_block_data = _load_block_catalog(REPORTER_BLOCKS_PATH)
226
+ # reporter_description = reporter_block_data["description"]
227
+ # reporter_opcodes_functionalities = os.path.join(REPORTER_BLOCKS_PATH, "reporter_blocks.txt")
228
+
229
+ # stack_block_data = _load_block_catalog(STACK_BLOCKS_PATH)
230
+ # stack_description = stack_block_data["description"]
231
+ # stack_opcodes_functionalities = os.path.join(STACK_BLOCKS_PATH, "stack_blocks.txt")
232
+
233
+
234
+ # # Helper function to extract JSON from LLM response
235
+ # def extract_json_from_llm_response(raw_response: str) -> dict:
236
+ # # --- 1) Pull out the JSON code‑block if present ---
237
+ # md = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", raw_response)
238
+ # json_string = md.group(1).strip() if md else raw_response
239
+
240
+ # # --- 2) Trim to the outermost { … } so we drop any prefix/suffix junk ---
241
+ # first, last = json_string.find('{'), json_string.rfind('}')
242
+ # if 0 <= first < last:
243
+ # json_string = json_string[first:last+1]
244
+
245
+ # # --- 3) PRE‑CLEANUP: remove stray assistant{…}, rogue assistant keys, fix boolean quotes ---
246
+ # json_string = re.sub(r'\b\w+\s*{', '{', json_string)
247
+ # json_string = re.sub(r'"assistant"\s*:', '', json_string)
248
+ # json_string = re.sub(r'\b(false|true)"', r'\1', json_string)
249
+ # logger.debug("Ran pre‑cleanup for stray tokens and boolean quotes.")
250
+
251
+ # # --- 3.1) Fix stray inner quotes at start of name/list values ---
252
+ # # e.g., { "name": " \"recent_scoress\"", ... } → "recent_scoress"
253
+ # json_string = re.sub(
254
+ # r'("name"\s*:\s*")\s*"',
255
+ # r'\1',
256
+ # json_string
257
+ # )
258
+
259
+ # # --- 4) Escape all embedded quotes in any `logic` value up to the next key ---
260
+ # def _esc(m):
261
+ # prefix, body = m.group(1), m.group(2)
262
+ # return prefix + body.replace('"', r'\"')
263
+ # json_string = re.sub(
264
+ # r'("logic"\s*:\s*")([\s\S]+?)(?=",\s*"[A-Za-z_]\w*"\s*:\s*)',
265
+ # _esc,
266
+ # json_string
267
+ # )
268
+ # logger.debug("Escaped embedded quotes in logic fields.")
269
+
270
+ # logger.debug("Quoted unquoted keys.")
271
+
272
+ # # --- 6) Remove trailing commas before } or ] ---
273
+ # json_string = re.sub(r',\s*(?=[}\],])', '', json_string)
274
+ # json_string = re.sub(r',\s*,', ',', json_string)
275
+ # logger.debug("Removed trailing commas.")
276
+
277
+ # # --- 7) Balance braces: drop extra } at end if needed ---
278
+ # ob, cb = json_string.count('{'), json_string.count('}')
279
+ # if cb > ob:
280
+ # excess = cb - ob
281
+ # json_string = json_string.rstrip()[:-excess]
282
+ # logger.debug(f"Stripped {excess} extra closing brace(s).")
283
+
284
+ # # --- 8) Escape literal newlines in *all* string values ---
285
+ # json_string = re.sub(
286
+ # r'"((?:[^"\\]|\\.)*?)"',
287
+ # lambda m: '"' + m.group(1).replace('\n', '\\n').replace('\r', '\\r') + '"',
288
+ # json_string,
289
+ # flags=re.DOTALL
290
+ # )
291
+ # logger.debug("Escaped newlines in strings.")
292
+
293
+ # # --- 9) Final parse attempt ---
294
+ # try:
295
+ # return json.loads(json_string)
296
+ # except json.JSONDecodeError:
297
+ # logger.error("Sanitized JSON still invalid:\n%s", json_string)
298
+ # raise
299
+
300
+ # # Main agent of the system agent for Scratch 3.0
301
+ # agent = create_react_agent(
302
+ # model=llm,
303
+ # tools=[], # No specific tools are defined here, but could be added later
304
+ # prompt=SYSTEM_PROMPT
305
+ # )
306
+
307
+ # # Node 6: Logic updating if any issue here
308
+ # def plan_logic_aligner_node(state: GameState):
309
+ # logger.info("--- Running plan_logic_aligner_node ---")
310
+
311
+ # image = state.get("image", "")
312
+
313
+ # refinement_prompt = f"""
314
+ # You are an expert in Scratch 3.0 game development, specializing in understanding block relationships (stacked, nested).
315
+ # "Analyze the Scratch code-block image and generate Pseudo-Code for what this logic appears to be doing."
316
+ # From Image, you also have to detect a value of Key given in Text form "Script for: ". Below is the example
317
+ # Example: "Script for: Bear", "Script for:" is a key and "Bear" is value.
318
+ # --- Scratch 3.0 Block Reference ---
319
+ # ### Hat Blocks
320
+ # Description: {hat_description}
321
+ # Blocks:
322
+ # {hat_opcodes_functionalities}
323
+
324
+ # ### Boolean Blocks
325
+ # Description: {boolean_description}
326
+ # Blocks:
327
+ # {boolean_opcodes_functionalities}
328
+
329
+ # ### C Blocks
330
+ # Description: {c_description}
331
+ # Blocks:
332
+ # {c_opcodes_functionalities}
333
+
334
+ # ### Cap Blocks
335
+ # Description: {cap_description}
336
+ # Blocks:
337
+ # {cap_opcodes_functionalities}
338
+
339
+ # ### Reporter Blocks
340
+ # Description: {reporter_description}
341
+ # Blocks:
342
+ # {reporter_opcodes_functionalities}
343
+
344
+ # ### Stack Blocks
345
+ # Description: {stack_description}
346
+ # Blocks:
347
+ # {stack_opcodes_functionalities}
348
+ # -----------------------------------
349
+
350
+ # Your task is to:
351
+ # If you don't find any "Code-Blocks" then,
352
+ # **Don't generate Pseudo Code, and pass the message "No Code-blocks" find...
353
+ # If you find any "Code-Blocks" then,
354
+ # 1. **Refine the 'logic'**: Make it precise, accurate, and fully aligned with the Game Description. Use Scratch‑consistent verbs and phrasing. **Do NOT** use raw double‑quotes inside the logic string.
355
+
356
+ # 2. **Structural requirements**:
357
+ # - **Numeric values** `(e.g., 0, 5, 0.2, -130)` **must** be in parentheses: `(0)`, `(5)`, `(0.2)`, `(-130)`.
358
+ # - **AlphaNumeric values** `(e.g., hello, say 5, 4, hi!)` **must** be in parentheses: `(hello)`, `(say 5)`, `(4)`, `(hi!)`.
359
+ # - **Variables** must be in the form `[variable v]` (e.g., `[score v]`), even when used inside expressions two example use `set [score v] to (1)` or `show variable ([speed v])`.
360
+ # - **Dropdown options** must be in the form `[option v]` (e.g., `[Game Start v]`, `[blue sky v]`). example use `when [space v] key pressed`.
361
+ # - **Reporter blocks** used as inputs must be double‑wrapped: `((x position))`, `((y position))`. example use `if <((y position)) = (-130)> then` or `(((x position)) * (1))`.
362
+ # - **Boolean blocks** in conditions must be inside `< >`, including nested ones: `<not <condition>>`, `<<cond1> and <cond2>>`,`<<cond1> or <cond2>>`.
363
+ # - **Other Boolean blocks** in conditions must be inside `< >`, including nested ones or values or variables: `<(block/value/variable) * (block/value/variable)>`,`<(block/value/variable) < (block/value/variable)>`, and example of another variable`<[apple v] contains [a v]?>`.
364
+ # - **Operator expressions** must use explicit Scratch operator blocks, e.g.:
365
+ # ```
366
+ # (([ballSpeed v]) * (1.1))
367
+ # ```
368
+ # - **Every hat block script must end** with a final `end` on its own line.
369
+
370
+ # 3. **Pseudo‑code formatting**:
371
+ # - Represent each block or nested block on its own line.
372
+ # - Indent nested blocks by 4 spaces under their parent (`forever`, `if`, etc.).
373
+ # - No comments or explanatory text—just the block sequence.
374
+ # - a natural language breakdown of each step taken after the event, formatted as a multi-line string representing pseudo-code. Ensure clarity and granularity—each described action should map closely to a Scratch block or tight sequence.
375
+
376
+ # 4. **Logic content**:
377
+ # - Build clear flow for mechanics (movement, jumping, flying, scoring, collisions).
378
+ # - Match each action closely to a Scratch block or tight sequence.
379
+ # - Do **NOT** include any justification or comments—only the raw logic.
380
+
381
+ # 5. **Examples for reference**:
382
+ # **Correct** pattern for a simple start script:
383
+ # ```
384
+ # when green flag clicked
385
+ # switch backdrop to [blue sky v]
386
+ # set [score v] to (0)
387
+ # show variable [score v]
388
+ # broadcast [Game Start v]
389
+ # end
390
+ # ```
391
+ # **Correct** pattern for updating the high score variable handling:
392
+ # ```
393
+ # when I receive [Game Over v]
394
+ # if <((score)) > (([High Score v]))> then
395
+ # set [High Score v] to ([score v])
396
+ # end
397
+ # switch backdrop to [Game Over v]
398
+ # end
399
+ # ```
400
+ # **Correct** pattern for level up and increase difficulty use:
401
+ # ```
402
+ # when I receive [Level Up v]
403
+ # change [level v] by (1)
404
+ # set [ballSpeed v] to ((([ballSpeed v]) * (1.1)))
405
+ # end
406
+ # ```
407
+ # **Correct** pattern for jumping mechanics use:
408
+ # ```
409
+ # when [space v] key pressed
410
+ # if <((y position)) = (-100)> then
411
+ # repeat (5)
412
+ # change y by (100)
413
+ # wait (0.1) seconds
414
+ # change y by (-100)
415
+ # wait (0.1) seconds
416
+ # end
417
+ # end
418
+ # end
419
+ # ```
420
+ # **Correct** pattern for continuos moving objects use:
421
+ # ```
422
+ # when green flag clicked
423
+ # go to x: (240) y: (-100)
424
+ # set [speed v] to (-5)
425
+ # show variable [speed v]
426
+ # forever
427
+ # change x by ([speed v])
428
+ # if <((x position)) < (-240)> then
429
+ # go to x: (240) y: (-100)
430
+ # end
431
+ # end
432
+ # end
433
+ # ```
434
+ # **Correct** pattern for continuos moving objects use:
435
+ # ```
436
+ # when green flag clicked
437
+ # go to x: (240) y: (-100)
438
+ # set [speed v] to (-5)
439
+ # show variable [speed v]
440
+ # forever
441
+ # change x by ([speed v])
442
+ # if <((x position)) < (-240)> then
443
+ # go to x: (240) y: (-100)
444
+ # end
445
+ # end
446
+ # end
447
+ # ```
448
+ # 6. **Donot** add any explaination of logic or comments to justify or explain just put the logic content in the json.
449
+ # 7. **Output**:
450
+ # Return **only** a JSON object, using double quotes everywhere:
451
+ # ```json
452
+ # {{
453
+ # "refined_logic":{{
454
+ # "name_variable": 'Value of "Sript for: "',
455
+ # "pseudocode":"…your fully‑formatted pseudo‑code here…",
456
+ # }}
457
+ # }}
458
+ # ```
459
+ # """
460
+ # image_input = {
461
+ # "type": "image_url",
462
+ # "image_url": {
463
+ # "url": f"data:image/png;base64,{image}"
464
+ # }
465
+ # }
466
+
467
+ # content = [
468
+ # {"type": "text", "text": refinement_prompt},
469
+ # image_input
470
+ # ]
471
+
472
+ # try:
473
+ # # Invoke the main agent for logic refinement and relationship identification
474
+ # response = agent.invoke({"messages": [{"role": "user", "content": content}]})
475
+ # llm_output_raw = response["messages"][-1].content.strip()
476
+
477
+ # parsed_llm_output = extract_json_from_llm_response(llm_output_raw)
478
+
479
+ # # result = parsed_llm_output
480
+ # # Extract needed values directly
481
+ # logic_data = parsed_llm_output.get("refined_logic", {})
482
+ # name_variable = logic_data.get("name_variable", "Unknown")
483
+ # pseudocode = logic_data.get("pseudocode", "No logic extracted")
484
+
485
+ # result = {"pseudo_node": {
486
+ # "name_variable": name_variable,
487
+ # "pseudocode": pseudocode
488
+ # }}
489
+
490
+ # print(f"result:\n\n {result}")
491
+ # return result
492
+ # except Exception as e:
493
+ # logger.error(f"❌ plan_logic_aligner_node failed: {str(e)}")
494
+ # return {"error": str(e)}
495
+ # except json.JSONDecodeError as error_json:
496
+ # # If JSON parsing fails, use the json resolver agent
497
+ # correction_prompt = (
498
+ # "Your task is to correct the provided JSON string to ensure it is **syntactically perfect and adheres strictly to JSON rules**.\n"
499
+ # "It must be a JSON object with `refined_logic` (string) and `block_relationships` (array of objects).\n"
500
+ # f"- **Error Details**: {error_json}\n\n"
501
+ # "**Strict Instructions for your response:**\n"
502
+ # "1. **ONLY** output the corrected JSON. Do not include any other text or explanations.\n"
503
+ # "2. Ensure all keys and string values are enclosed in **double quotes**. Escape internal quotes (`\\`).\n"
504
+ # "3. No trailing commas. Correct nesting.\n\n"
505
+ # "Here is the problematic JSON string to correct:\n"
506
+ # f"```json\n{llm_output_raw}\n```\n"
507
+ # "Corrected JSON:\n"
508
+ # )
509
+ # try:
510
+ # correction_response = agent_json_resolver.invoke({"messages": [{"role": "user", "content": correction_prompt}]})
511
+ # corrected_output = extract_json_from_llm_response(correction_response["messages"][-1].content)
512
+ # #block_relationships = corrected_output.get("block_relationships", [])
513
+ # result = {
514
+ # #"image_path": image_path,
515
+ # "pseudo_code": corrected_output
516
+ # }
517
+
518
+ # return result
519
+
520
+ # except Exception as e_corr:
521
+ # logger.error(f"Failed to correct JSON output for even after retry: {e_corr}")
522
+
523
+ # scratch_keywords = [
524
+ # "move", "turn", "wait", "repeat", "if", "else", "broadcast",
525
+ # "glide", "change", "forever", "when", "switch",
526
+ # "next costume", "set", "show", "hide", "play sound",
527
+ # "go to", "x position", "y position", "think", "say",
528
+ # "variable", "stop", "clone",
529
+ # "touching", "sensing", "pen", "clear","Scratch","Code","scratch blocks"
530
+ # ]
531
+
532
+ # filtered_sprites = {}
533
+ # Prepare manipulated sprite JSON structure
534
+ manipulated_json = {}
535
+ img_elements = []
536
+
537
+ # @log_execution_time
538
+ # --- FUNCTION: Extract images from saved PDF ---
539
+ def extract_images_from_pdf(pdf_stream: io.BytesIO):
540
+ ''' Extract images from PDF and generate structured sprite JSON '''
541
+ try:
542
+ # pdf_filename = os.path.splitext(os.path.basename(pdf_stream))[0] # e.g., "scratch_crab"
543
+ if isinstance(pdf_stream, io.BytesIO):
544
+ # use a random ID since there's no filename
545
+ pdf_id = uuid.uuid4().hex
546
+ else:
547
+ pdf_id = os.path.splitext(os.path.basename(pdf_stream))[0]
548
+ # pdf_dir_path = os.path.dirname(pdf_stream).replace("/", "\\")
549
+
550
+ # Create subfolders
551
+ # extracted_image_subdir = os.path.join(DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
552
+ # json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
553
+ # os.makedirs(extracted_image_subdir, exist_ok=True)
554
+ # os.makedirs(json_subdir, exist_ok=True)
555
+ # pdf_bytes = pdf_stream.getvalue()
556
+ try:
557
+ elements = partition_pdf(
558
+ file=pdf_stream,
559
+ strategy="hi_res",
560
+ extract_image_block_types=["Image"],
561
+ hi_res_model_name="yolox",
562
+ extract_image_block_to_payload=True, # Set to True to get base64 in output
563
+ )
564
+ except Exception as e:
565
+ raise RuntimeError(
566
+ f"❌ Failed to extract images from PDF: {str(e)}")
567
+
568
+ file_elements = [element.to_dict() for element in elements]
569
+
570
+ sprite_count = 1
571
+ for el in file_elements:
572
+ img_b64 = el["metadata"].get("image_base64")
573
+ # with open(os.path.join(DETECTED_IMAGE_FOLDER_PATH, f"img_{sprite_count}.png")) as d_img:
574
+ # d_img = img_b64
575
+ if not img_b64:
576
+ continue
577
+
578
+ # raw = base64.b64decode(img_b64)
579
+ # im = Image.open(io.BytesIO(raw)).convert("RGB")
580
+ # up = upscale_image(im, scale=2)
581
+ # buf = io.BytesIO()
582
+ # up.save(buf, format="PNG")
583
+ # buf.seek(0)
584
+ # img_elements.append(base64.b64encode(buf.getvalue()).decode())
585
+ # print(f"------------------------IMAGE ELEMENTS: \n{img_elements}")
586
+
587
+ # auto_id = f"sprite_{sprite_count}"
588
+
589
+ manipulated_json[f"Sprite {sprite_count}"] = {
590
+ # "id":auto_id,
591
+ # "name": name,
592
+ "base64": el["metadata"]["image_base64"],
593
+ "file-path": pdf_id,
594
+ # "description": description
595
+ }
596
+ sprite_count += 1
597
+ # print(f"************MANIPULATED JSON: {manipulated_json}")
598
+
599
+ # manipulated_json_path = os.path.join(JSON_FOLDER_PATH, "manipulated.json")
600
+ # with open(manipulated_json_path, 'w') as f:
601
+ # json.dump(manipulated_json, f, indent=2)
602
+ # def is_code_block(name: str) -> bool:
603
+ # for kw in scratch_keywords:
604
+ # if kw.lower() in name.lower():
605
+ # return True
606
+ # return False
607
+
608
+ # # Filter out code block images
609
+ # for key, value in manipulated_json.items():
610
+ # sprite_name = value.get("name", "")
611
+ # if not is_code_block(sprite_name):
612
+ # filtered_sprites[key] = value
613
+ # else:
614
+ # logger.info(f"🛑 Excluded code block-like image: {key}")
615
+
616
+ return manipulated_json
617
+ except Exception as e:
618
+ raise RuntimeError(f"❌ Error in extract_images_from_pdf: {str(e)}")
619
+
620
+ # @log_execution_time
621
+ def similarity_matching(sprites_data: str, project_folder:str) -> str:
622
+ logger.info("🔍 Running similarity matching...")
623
+
624
+ # ============================== #
625
+ # DEFINE PATHS #
626
+ # ============================== #
627
+ # backdrop_images_path = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\Backdrops"
628
+ # sprite_images_path = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\sprites"
629
+ # image_dirs = [backdrop_images_path, sprite_images_path]
630
+
631
+ project_json_path = os.path.join(project_folder, "project.json")
632
+
633
+ # ============================== #
634
+ # READ SPRITE METADATA #
635
+ # ============================== #
636
+ # with open(input_json_path, 'r') as f:
637
+ # sprites_data = json.load(f)
638
+
639
+ sprite_ids, texts, sprite_base64 = [], [], []
640
+ for sid, sprite in sprites_data.items():
641
+ sprite_ids.append(sid)
642
+ # texts.append(
643
+ # "This is " + sprite.get("description", sprite.get("name", "")))
644
+ sprite_base64.append(sprite["base64"])
645
+ # print(f"\nSPRITE_BASE64: \n{sprite_base64}\n\n")
646
+
647
+ sprite_images_bytes = []
648
+ for b64 in sprite_base64:
649
+ img = Image.open(BytesIO(base64.b64decode(b64.split(",")[-1]))).convert("RGB")
650
+ buffer = BytesIO()
651
+ img.save(buffer, format="PNG")
652
+ buffer.seek(0)
653
+ sprite_images_bytes.append(buffer)
654
+
655
+ # ========================================= #
656
+ # Walk folders to collect all image paths #
657
+ # ========================================= #
658
+ folder_image_paths = ['E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\bedroom\\8cc0b88d53345b3e337e8f028a32a4e7.png',
659
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\baseball\\7be1f5b3e682813dac1f297e52ff7dca.png',
660
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\beach_malibu\\050615fe992a00d6af0e664e497ebf53.png',
661
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\castle\\951765ee7f7370f120c9df20b577c22f.png',
662
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\hall\\ea86ca30b346f27ca5faf1254f6a31e3.png',
663
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\jungle\\f4f908da19e2753f3ed679d7b37650ca.png',
664
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Batter\\baseball_sprite_motion_1.png',
665
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Bear\\bear_motion_2.png',
666
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Beetle\\46d0dfd4ae7e9bfe3a6a2e35a4905eae.png',
667
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\cat\\cat_motion_1.png',
668
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Centaur\\2373556e776cad3ba4d6ee04fc34550b.png',
669
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Crab\\bear_element.png',
670
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Soccer Ball\\cat_football.png',
671
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\code_blocks\\script1.jpg',
672
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\code_blocks\\script2.jpg',
673
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\code_blocks\\script3.jpg',
674
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\code_blocks\\script4.jpg',
675
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\code_blocks\\script5.jpg',
676
+ 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\code_blocks\\script6.jpg' ]
677
+
678
+ # ============================== #
679
+ # EMBED SPRITE IMAGES #
680
+ # ============================== #
681
+ sprite_features = clip_embd.embed_image(sprite_images_bytes)
682
+
683
+ # # ============================== #
684
+ # # EMBED FOLDER IMAGES (REF) #
685
+ # # ============================== #
686
+ # img_features = clip_embd.embed_image(folder_image_paths)
687
+
688
+ # # ============================== #
689
+ # # Store image embeddings #
690
+ # # ============================== #
691
+ # embedding_json = []
692
+ # for i, path in enumerate(folder_image_paths):
693
+ # embedding_json.append({
694
+ # "name":os.path.basename(path),
695
+ # "file-path": path,
696
+ # "embeddings": list(img_features[i])
697
+ # })
698
+
699
+ # # # Save to embeddings.json
700
+ # with open(f"{OUTPUT_FOLDER}/embeddings.json", "w") as f:
701
+ # json.dump(embedding_json, f, indent=2)
702
+
703
+ # ============================== #
704
+ # COMPUTE SIMILARITIES #
705
+ # ============================== #
706
+ ref_embedding_path = f"{OUTPUT_FOLDER}/embeddings.json"
707
+ with open(ref_embedding_path, "r") as f:
708
+ embedding_json = json.load(f)
709
+ # print(f"\n\n EMBEDDING JSON: {embedding_json}")
710
+
711
+ img_matrix = np.array([img["embeddings"] for img in embedding_json])
712
+ sprite_matrix = np.array(sprite_features)
713
+
714
+ # if sprite_matrix.size == 0 or img_matrix.size == 0:
715
+ # raise RuntimeError("❌ No valid embeddings found for sprites or reference images.")
716
+ similarity = np.matmul(sprite_matrix, img_matrix.T)
717
+ # try:
718
+ # similarity = np.matmul(sprite_matrix, img_matrix.T)
719
+ # except ValueError as ve:
720
+ # if "matmul" in str(ve) and "size" in str(ve):
721
+ # logger.error("❌ Matrix multiplication failed due to shape mismatch. Likely due to empty or invalid embeddings.")
722
+ # raise RuntimeError("Matrix shape mismatch: CLIP embedding input is invalid or empty.")
723
+ # else:
724
+ # raise
725
+ most_similar_indices = np.argmax(similarity, axis=1)
726
+ sprite_base_path = r'E:\Pratham\2025\Harsh Sir\Scratch Vision\images\sprites'
727
+ # ============= Match and copy ===============
728
+ project_data = [] #will hold loaded "sprite.json" contents for building the final "project.json"
729
+ copied_folders = set() # prevents copying the same sprite folder more than once.
730
+
731
+ # =============================================================== #
732
+ # Loop through most similar images from Sprites folder #
733
+ # → Copy sprite assets (excluding matched image + sprite.json) #
734
+ # → Load sprite.json and append its data to project_data #
735
+ # =============================================================== #
736
+ #sprite_idx: index of sprite we are processing
737
+ #match_idx: index of the reference image with the highest similarity
738
+ for sprite_idx, matched_idx in enumerate(most_similar_indices):
739
+ matched_image_path = folder_image_paths[matched_idx]
740
+ print(f"------------ folder image paths: \n {folder_image_paths[matched_idx]}\n")
741
+ matched_image_path = os.path.normpath(matched_image_path)
742
+
743
+ matched_folder = os.path.dirname(matched_image_path)
744
+ print(f"\nMATCHED_FOLDER: {matched_folder}\n")
745
+ if not matched_folder.startswith(os.path.normpath(sprite_base_path)):
746
+ continue
747
+
748
+ folder_name = os.path.basename(matched_folder)
749
+ print(f"FOLDER NAME: {folder_name}")
750
+ print(f"================COPIED FOLDER: \n {copied_folders}\n")
751
+ if matched_folder in copied_folders:
752
+ continue
753
+ copied_folders.add(matched_folder)
754
+ logger.info(f"Matched sprites: {matched_image_path}")
755
+
756
+ sprite_json_path = os.path.join(matched_folder, 'sprite.json')
757
+ if not os.path.exists(sprite_json_path):
758
+ logger.warning(f"sprite.json not found in: {matched_folder}")
759
+ continue
760
+
761
+ with open(sprite_json_path, 'r') as f:
762
+ sprite_data = json.load(f)
763
+ # print(f"SPRITE DATA: \n{sprite_data}")
764
+
765
+ # Copy only non-matched files
766
+ for fname in os.listdir(matched_folder):
767
+ fpath = os.path.join(matched_folder, fname)
768
+ if os.path.isfile(fpath) and fname not in {os.path.basename(matched_image_path), 'sprite.json'}:
769
+ shutil.copy2(fpath, os.path.join(project_folder, fname))
770
+ # logger.info(f"Copied Sprite asset: {fname}")
771
+ project_data.append(sprite_data)
772
+
773
+ # ================================================================== #
774
+ # Loop through most similar images from Backdrops folder #
775
+ # → Copy matched image + other backdrop assets into project_folder #
776
+ # → Load project.json and append its stage target to backdrop_data#
777
+ # ================================================================== #
778
+ backdrop_data = [] # for backdrop-related entries
779
+ copied_backdrop_folders = set() # prevent duplicate backdrops
780
+
781
+ # make sure backdrop_base_path is normalized
782
+ backdrop_base_path = os.path.normpath(r'E:\Pratham\2025\Harsh Sir\Scratch Vision\images\Backdrops')
783
+
784
+ for backdrop_idx, matched_idx in enumerate(most_similar_indices):
785
+ matched_image_path = os.path.normpath(folder_image_paths[matched_idx])
786
+
787
+ # only handle backdrops
788
+ if not matched_image_path.startswith(backdrop_base_path):
789
+ continue
790
+
791
+ matched_folder = os.path.dirname(matched_image_path)
792
+ # skip if backdrop folder already processed
793
+ if matched_folder in copied_backdrop_folders:
794
+ continue
795
+ copied_backdrop_folders.add(matched_folder)
796
+
797
+ matched_filename = os.path.basename(matched_image_path)
798
+ logger.info(f"Backdrop matched image: {matched_image_path}")
799
+
800
+ # 1) Copy the matched backdrop image itself
801
+ try:
802
+ shutil.copy2(
803
+ matched_image_path,
804
+ os.path.join(project_folder, matched_filename)
805
+ )
806
+ logger.info(f"✅ Copied matched backdrop image {matched_filename} to {project_folder}")
807
+ except Exception as e:
808
+ logger.error(f"❌ Failed to copy matched backdrop {matched_image_path}: {e}")
809
+
810
+ # 2) Copy other non‐matched files (e.g. extra costumes) into project_folder
811
+ for fname in os.listdir(matched_folder):
812
+ if fname in {matched_filename, 'project.json'}:
813
+ continue
814
+ src = os.path.join(matched_folder, fname)
815
+ dst = os.path.join(project_folder, fname)
816
+ if os.path.isfile(src):
817
+ try:
818
+ shutil.copy2(src, dst)
819
+ logger.info(f"Copied additional backdrop asset {fname} to project folder")
820
+ except Exception as e:
821
+ logger.error(f"Failed to copy {src}: {e}")
822
+
823
+ # 3) Load and append the Stage target from this backdrop's project.json
824
+ backdrop_json_path = os.path.join(matched_folder, 'project.json')
825
+ if os.path.exists(backdrop_json_path):
826
+ with open(backdrop_json_path, 'r') as f:
827
+ backdrop_json_data = json.load(f)
828
+ for target in backdrop_json_data.get("targets", []):
829
+ if target.get("isStage"):
830
+ backdrop_data.append(target)
831
+ else:
832
+ logger.warning(f"project.json not found in: {matched_folder}")
833
+
834
+ # Merge JSON structure
835
+ final_project = {
836
+ "targets": [],
837
+ "monitors": [],
838
+ "extensions": [],
839
+ "meta": {
840
+ "semver": "3.0.0",
841
+ "vm": "11.3.0",
842
+ "agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/138.0.0.0 Safari/537.36 Edg/138.0.0.0"
843
+ }
844
+ }
845
+
846
+ for sprite in project_data:
847
+ if not sprite.get("isStage", False):
848
+ final_project["targets"].append(sprite)
849
+
850
+ if backdrop_data:
851
+ all_costumes, sounds = [], []
852
+ for idx, bd in enumerate(backdrop_data):
853
+ all_costumes.extend(bd.get("costumes", []))
854
+ if idx == 0 and "sounds" in bd:
855
+ sounds = bd["sounds"]
856
+ final_project["targets"].append({
857
+ "isStage": True,
858
+ "name": "Stage",
859
+ "objName": "Stage",
860
+ "variables": { "`jEk@4|i[#Fk?(8x)AV.-my variable": ["my variable", 0] },
861
+ "lists": {},
862
+ "broadcasts": {},
863
+ "blocks": {},
864
+ "comments": {},
865
+ "currentCostume": 1 if len(all_costumes) > 1 else 0,
866
+ "costumes": all_costumes,
867
+ "sounds": sounds,
868
+ "volume": 100,
869
+ "layerOrder": 0,
870
+ "tempo": 60,
871
+ "videoTransparency": 50,
872
+ "videoState": "on",
873
+ "textToSpeechLanguage": None
874
+ })
875
+ else:
876
+ logger.warning("⚠️ No backdrop matched. Using default static backdrop.")
877
+ default_backdrop_path = os.path.normpath(r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\plain_white.svg")
878
+ default_backdrop_name = os.path.basename(default_backdrop_path)
879
+
880
+ default_backdrop_sound = os.path.normpath(r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\83a9787d4cb6f3b7632b4ddfebf74367.wav")
881
+ default_backdrop_sound_name = os.path.basename(default_backdrop_sound)
882
+
883
+ try:
884
+ shutil.copy2(default_backdrop_path, os.path.join(project_folder, default_backdrop_name))
885
+ logger.info(f"✅ Default backdrop copied to project: {default_backdrop_name}")
886
+
887
+ shutil.copy2(default_backdrop_sound, os.path.join(project_folder, default_backdrop_sound_name))
888
+ logger.info(f"✅ Default backdrop sound copied to project: {default_backdrop_sound_name}")
889
+
890
+ except Exception as e:
891
+ logger.error(f"❌ Failed to copy default backdrop assets: {e}")
892
+
893
+ final_project["targets"].append({
894
+ "isStage": True,
895
+ "name": "Stage",
896
+ "objName": "Stage",
897
+ "variables": {},
898
+ "lists": {},
899
+ "broadcasts": {},
900
+ "blocks": {},
901
+ "comments": {},
902
+ "currentCostume": 0,
903
+ "costumes": [
904
+ {
905
+ "assetId": default_backdrop_name.split(".")[0],
906
+ "name": "defaultBackdrop",
907
+ "md5ext": default_backdrop_name,
908
+ "dataFormat": "png",
909
+ "rotationCenterX": 240,
910
+ "rotationCenterY": 180
911
+ }
912
+ ],
913
+ "sounds": [
914
+ {
915
+ "name": "pop",
916
+ "assetId": "83a9787d4cb6f3b7632b4ddfebf74367",
917
+ "dataFormat": "wav",
918
+ "format": "",
919
+ "rate": 48000,
920
+ "sampleCount": 1123,
921
+ "md5ext": "83a9787d4cb6f3b7632b4ddfebf74367.wav"
922
+ }
923
+ ],
924
+ "volume": 100,
925
+ "layerOrder": 0,
926
+ "tempo": 60,
927
+ "videoTransparency": 50,
928
+ "videoState": "on",
929
+ "textToSpeechLanguage": None
930
+ })
931
+
932
+ with open(project_json_path, 'w') as f:
933
+ json.dump(final_project, f, indent=2)
934
+
935
+ validate_and_copy_assets(
936
+ action_planner_path=r"E:\Pratham\2025\Harsh Sir\Scratch Vision\action_plan.json",
937
+ project_json_path=project_json_path,
938
+ project_folder=project_folder,
939
+ sprite_base_path=sprite_base_path,
940
+ backdrop_base_path=backdrop_base_path,
941
+ final_project = final_project
942
+ )
943
+ # project_data.extend(extra_sprites)
944
+ # backdrop_data.extend(extra_backdrops)
945
+ # logger.info(f"🎉 Final project saved: {project_json_path}")
946
+ return project_json_path
947
+
948
+ def validate_and_copy_assets(action_planner_path, project_json_path, project_folder,sprite_base_path, backdrop_base_path, final_project):
949
+ # step 1: Load action_plan.json and get the first sprite name after "Stage":{...}
950
+ with open(action_planner_path, 'r', encoding='utf-8') as f:
951
+ planner_data = json.load(f)
952
+
953
+ script_for = None
954
+ keys = list(planner_data.keys())
955
+ if len(keys) > 1:
956
+ script_for = keys[1]
957
+ else:
958
+ print("No sprite name found after 'Stage'")
959
+ return
960
+
961
+ print(f"\n\n=================script_for = '{script_for}'\n\n")
962
+
963
+ # step 2: check in project.json if sprite exists
964
+ sprite_found = False
965
+ with open(project_json_path, 'r', encoding='utf-8') as f:
966
+ project_data = json.load(f)
967
+
968
+ for target in project_data.get("targets", []):
969
+ if target.get("name", "").lower() == script_for.lower():
970
+ sprite_found = True
971
+ break
972
+
973
+ if sprite_found:
974
+ print(f"'{script_for}' found in project.json – no asset copy needed.")
975
+ return
976
+
977
+ # Step 3: Search in backdrops and sprites folders
978
+ base_dirs = [sprite_base_path, backdrop_base_path]
979
+ # project_data = []
980
+ found_sprites = []
981
+ # backdrop_data = []
982
+ found_backdrops = []
983
+
984
+ # search in sprites
985
+ if os.path.exists(sprite_base_path):
986
+ for sub_dir in os.listdir(sprite_base_path):
987
+ folder_path = os.path.join(sprite_base_path, sub_dir)
988
+ sprite_json_path = os.path.join(folder_path, "sprite.json")
989
+ if os.path.isdir(folder_path) and os.path.exists(sprite_json_path):
990
+ with open(sprite_json_path, 'r', encoding='utf-8') as f:
991
+ sprite_info = json.load(f)
992
+
993
+ if sprite_info.get("name", "").lower() == script_for.lower():
994
+ print(f"Found matching sprite in {sprite_json_path}")
995
+ # Copy all assets except json
996
+ for fname in os.listdir(folder_path):
997
+ if fname=='sprite.json':
998
+ continue
999
+ shutil.copy2(os.path.join(folder_path, fname), os.path.join(project_folder, fname))
1000
+ found_sprites.append(sprite_info)
1001
+ break
1002
+
1003
+ # search in backdrops
1004
+ if os.path.exists(backdrop_base_path):
1005
+ for sub_dir in os.listdir(backdrop_base_path):
1006
+ folder_path = os.path.join(backdrop_base_path, sub_dir)
1007
+ proj_json_path = os.path.join(folder_path, "project.json")
1008
+ if os.path.isdir(folder_path) and os.path.exists(proj_json_path):
1009
+ with open(proj_json_path, 'r', encoding='utf-8') as f:
1010
+ bd_json = json.load(f)
1011
+ for tgt in bd_json.get("targets", []):
1012
+ if tgt.get("name", "").lower() == script_for.lower():
1013
+ print(f"Found matching backdrop in {proj_json_path}")
1014
+ # Copy all assets except JSON
1015
+ for fname in os.listdir(folder_path):
1016
+ if fname == "project.json":
1017
+ continue
1018
+ shutil.copy2(os.path.join(folder_path, fname),
1019
+ os.path.join(project_folder, fname))
1020
+ found_backdrops.append(tgt)
1021
+ break
1022
+ # return found_sprites, found_backdrops
1023
+ # Merge into final project.json
1024
+ for spr in found_sprites:
1025
+ if not spr.get("isStage", False):
1026
+ final_project["targets"].append(spr)
1027
+ for bd in found_backdrops:
1028
+ if bd.get("isStage", False):
1029
+ final_project["targets"].insert(0, bd)
1030
+
1031
+ with open(project_json_path, 'w', encoding='utf-8') as f:
1032
+ json.dump(final_project, f, indent=2)
1033
+
1034
+ if found_sprites or found_backdrops:
1035
+ print(f"✅ Updated {project_json_path} with missing '{script_for}' assets.")
1036
+ else:
1037
+ print(f"⚠️ No matching '{script_for}' assets found in sprites/backdrops.")
1038
+
1039
+ # --- ASYNC PDF to Image Conversion ---
1040
+ async def convert_pdf_to_images_async(pdf_stream: io.BytesIO, dpi=150):
1041
+ loop = asyncio.get_event_loop()
1042
+ return await loop.run_in_executor(None, lambda: convert_bytes_to_image(pdf_stream.getvalue(), dpi))
1043
+
1044
+ # pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
1045
+ # output_image_folder = os.path.join(IMAGE_FOLDER_PATH, pdf_name)
1046
+ # loop = asyncio.get_event_loop()
1047
+ # with ThreadPoolExecutor() as pool:
1048
+ # # Pass poppler_path explicitly
1049
+ # result = await loop.run_in_executor(
1050
+ # pool, convert_pdf_to_images_sync, pdf_path, output_image_folder, dpi, poppler_path
1051
+ # )
1052
+ # return result
1053
+
1054
+ def convert_bytes_to_image(pdf_bytes: bytes, dpi: int):
1055
+ images = convert_from_bytes(pdf_bytes, dpi=dpi, poppler_path=poppler_path)
1056
+ # Save each page to an in-memory BytesIO and return a list of BytesIOs
1057
+ buffers = []
1058
+ for img in images:
1059
+ buf = BytesIO()
1060
+ img.save(buf, format="PNG")
1061
+ buf.seek(0)
1062
+ buffers.append(buf)
1063
+ return buffers
1064
+
1065
+ # # Blocking version used internally
1066
+ # def convert_pdf_to_images_sync(pdf_path, output_image_folder, dpi, poppler_path):
1067
+ # pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
1068
+ # output_image_folder = os.path.join("outputs", "SCANNED_IMAGE", pdf_name)
1069
+ # os.makedirs(output_image_folder, exist_ok=True)
1070
+
1071
+ # print(f"[INFO] Converting PDF: {pdf_path}")
1072
+ # print(f"[INFO] Output folder: {output_image_folder}")
1073
+ # # print(f"[INFO] Using Poppler path: {poppler_path}")
1074
+ # try:
1075
+ # images = convert_from_path(pdf_path, dpi=dpi, poppler_path=poppler_path)
1076
+ # image_paths = []
1077
+ # for i, img in enumerate(images):
1078
+ # output_path = os.path.join(output_image_folder, f"page_{i+1}.png")
1079
+ # img.save(output_path, "PNG")
1080
+ # print(f"[DEBUG] Saved: {output_path}")
1081
+ # image_paths.append(output_path)
1082
+ # return image_paths
1083
+ # except PDFInfoNotInstalledError as e:
1084
+ # raise RuntimeError(f"Poppler not installed or path incorrect: {str(e)}")
1085
+ # except Exception as e:
1086
+ # print(f"[ERROR] Failed to convert PDF: {e}")
1087
+ # raise
1088
+
1089
+ # def delay_for_tpm_node(state: GameState):
1090
+ # logger.info("--- Running DelayForTPMNode ---")
1091
+ # time.sleep(10) # Adjust the delay as needed
1092
+ # logger.info("Delay completed.")
1093
+ # return state
1094
+
1095
+ # # Build the LangGraph workflow
1096
+ # workflow = StateGraph(GameState)
1097
+
1098
+ # # Add all nodes to the workflow
1099
+ # workflow.add_node("timer_delay",delay_for_tpm_node)
1100
+ # workflow.add_node("opcode_counter", plan_logic_aligner_node)
1101
+ # workflow.set_entry_point("timer_delay")
1102
+ # workflow.add_edge("timer_delay","opcode_counter")
1103
+ # workflow.add_edge("opcode_counter", END)
1104
+ # app_graph = workflow.compile()
1105
+
1106
+ # def get_desc_pseudo(image_buf: BytesIO, pseudo_store: dict, project_folder: str):
1107
+ # """
1108
+ # Takes a path to a code-block image and returns a dict with:
1109
+ # - 'pseudo_code': pseudo-code representing logic in Scratch block format
1110
+ # Stores the output into outputs/pseudo_output.json
1111
+ # """
1112
+ # try:
1113
+ # # Load image and encode to base64
1114
+ # # with open(image_buf, "rb") as image_file:
1115
+ # # image_bytes = image_file.read()
1116
+ # img_base64 = base64.b64encode(image_buf.getvalue()).decode()
1117
+ # # pseudo_store[image_key] = pseudo
1118
+
1119
+ # # === Call LangGraph workflow (auto triggers plan_logic_aligner_node) ===
1120
+ # state = app_graph.invoke({"image": img_base64})
1121
+ # # { comment: to solve pseudo_output issue
1122
+ # # logic_refined = state.get("pseudo_node", {}).get("refined_logic", {})
1123
+ # pseudo_node = state.get("pseudo_node", {})
1124
+
1125
+ # name_variable = pseudo_node.get("name_variable", "Unknown")
1126
+ # pseudocode = pseudo_node.get("pseudocode", "No logic extracted")
1127
+
1128
+ # pseudo_store.setdefault(name_variable, []).append({"pseudo_code": pseudocode})
1129
+
1130
+ # # --- Extract fields ---
1131
+ # # refined = logic_refined.get("refined_logic", {})
1132
+ # # {comment: to solve pseudo_output.json issue}
1133
+ # # name_variable = logic_refined.get("name_variable", "Unknown")
1134
+ # # pseudo_code_raw = logic_refined.get("pseudocode", "No logic extracted")
1135
+ # # if pseudo_store is not None:
1136
+ # # pseudo_store.setdefault(name_variable, []).append({"pseudo_code": pseudo_code_raw})
1137
+ # #}
1138
+ # with open(os.path.join(project_folder, "pseudo_output.json"), "w") as f:
1139
+ # json.dump(pseudo_store, f, indent=2)
1140
+
1141
+ # result = {
1142
+ # "name_variable": name_variable,
1143
+ # "pseudo_code": pseudocode
1144
+ # }
1145
+ # return result
1146
+ # except Exception as e:
1147
+ # logger.error(f"❌ get_desc_pseudo failed for {image_buf}: {e}")
1148
+ # return {
1149
+ # "error": str(e)
1150
+ # }
1151
+
1152
+ # ============== Helper function to Upscale an Image ============== #
1153
+ def upscale_image(image: Image.Image, scale: int = 2) -> Image.Image:
1154
+ """
1155
+ Upscales a PIL image by a given scale factor.
1156
+ """
1157
+ try:
1158
+ width, height = image.size
1159
+ new_size = (width * scale, height * scale)
1160
+ upscaled_image = image.resize(new_size, Image.LANCZOS)
1161
+ logger.info(f"✅ Upscaled image to {new_size}")
1162
+ return upscaled_image
1163
+ except Exception as e:
1164
+ logger.error(f"❌ Error during image upscaling: {str(e)}")
1165
+ return image
1166
+
1167
+ @app.route('/')
1168
+ def index():
1169
+ return render_template('app_index.html')
1170
+
1171
+ # API endpoint
1172
+ @app.route('/process_pdf', methods=['POST'])
1173
+ async def process_pdf():
1174
+ start_time = time.time()
1175
+ try:
1176
+ logger.info("Received request to process PDF.")
1177
+ if 'pdf_file' not in request.files:
1178
+ logger.warning("No PDF file found in request.")
1179
+ return jsonify({"error": "Missing PDF file in form-data with key 'pdf_file'"}), 400
1180
+
1181
+ pdf_file = request.files['pdf_file']
1182
+ if pdf_file.filename == '':
1183
+ return jsonify({"error": "Empty filename"}), 400
1184
+
1185
+ # ================================================= #
1186
+ # Generate Random UUID for project folder name #
1187
+ # ================================================= #
1188
+ random_id = str(uuid.uuid4()).replace('-', '')
1189
+ project_folder = os.path.join("outputs", f"project_{random_id}")
1190
+
1191
+ # =========================================================================== #
1192
+ # Create empty json in project_{random_id} folder #
1193
+ # =========================================================================== #
1194
+ os.makedirs(project_folder, exist_ok=True)
1195
+
1196
+ # Save the uploaded PDF temporarily
1197
+ # filename = secure_filename(pdf_file.filename)
1198
+ # # temp_dir = tempfile.mkdtemp()
1199
+ # # saved_pdf_path = os.path.join(temp_dir, filename)
1200
+ # saved_pdf_path = os.path.join(DETECTED_IMAGE_FOLDER_PATH, filename)
1201
+ # pdf_file.save(saved_pdf_path)
1202
+
1203
+ pdf_bytes = pdf_file.read()
1204
+ pdf_stream = io.BytesIO(pdf_bytes)
1205
+ # logger.info(f"Created project folder: {project_folder}")
1206
+ logger.info(f"Saved uploaded PDF to: {pdf_stream}")
1207
+
1208
+ # Extract & process
1209
+ json_path = None
1210
+ # output_path, result = extract_images_from_pdf(saved_pdf_path, json_path)
1211
+ # print(f"\n\n OUTPUT_PATH: \n{output_path}\n")
1212
+ manipulated_sprites = extract_images_from_pdf(pdf_stream)
1213
+ # print(f"\nRESULT: {result}\n")
1214
+ # project_output = similarity_matching(output_path, project_folder)
1215
+ project_output = similarity_matching(manipulated_sprites, project_folder)
1216
+
1217
+ # Call the async function from sync code
1218
+ try:
1219
+ image_paths = await convert_pdf_to_images_async(pdf_stream)
1220
+ print("PDF converted to images:", image_paths)
1221
+
1222
+ # # Create an in-memory store for pseudo-codes
1223
+ # pseudo_store = {}
1224
+ # [get_desc_pseudo(img_buf, pseudo_store, project_folder) for img_buf in image_paths]
1225
+ except Exception as e:
1226
+ print(f"Error processing PDF: {e}")
1227
+
1228
+ # Convert in-memory images to base64 strings
1229
+ scanned_images_b64 = [
1230
+ base64.b64encode(buf.getvalue()).decode("utf-8")
1231
+ for buf in image_paths
1232
+ ]
1233
+ total_time = time.time() - start_time # ⏳ End timer
1234
+ logger.info(f"⏱ Total processing time for PDF: {total_time:.2f} seconds")
1235
+ return jsonify({
1236
+ "message": "✅ PDF processed successfully",
1237
+ # "output_json": output_path,
1238
+ # "sprites": filtered_sprites,
1239
+ "project_output_json": project_output,
1240
+ "scanned_images": scanned_images_b64,
1241
+ # "scanned_image_pseudo": pseudo_results
1242
+ })
1243
+ except Exception as e:
1244
+ logger.exception("❌ Failed to process PDF")
1245
+ return jsonify({"error": f"❌ Failed to process PDF: {str(e)}"}), 500
1246
+
1247
+ if __name__ == '__main__':
1248
+ app.run(host='0.0.0.0', port=7860, debug=True)
app_main copy.py ADDED
@@ -0,0 +1,1400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify
2
+ import cv2, json,base64,io,os,tempfile,torch,logging, re
3
+ import numpy as np
4
+ from unstructured.partition.pdf import partition_pdf
5
+ from PIL import Image, ImageEnhance, ImageDraw
6
+ # from imutils.perspective import four_point_transform
7
+ from dotenv import load_dotenv
8
+ import pytesseract
9
+ # from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
10
+ from langchain_community.document_loaders.image_captions import ImageCaptionLoader
11
+ from werkzeug.utils import secure_filename
12
+ from langchain_groq import ChatGroq
13
+ from langgraph.prebuilt import create_react_agent
14
+ from pdf2image import convert_from_path
15
+ import asyncio
16
+ from concurrent.futures import ThreadPoolExecutor
17
+ from pdf2image.exceptions import PDFInfoNotInstalledError
18
+ from typing import Dict, TypedDict, Optional, Any
19
+ from langgraph.graph import StateGraph, END
20
+ import uuid
21
+ import shutil, time
22
+ from langchain_experimental.open_clip.open_clip import OpenCLIPEmbeddings
23
+ # from matplotlib.offsetbox import OffsetImage, AnnotationBbox
24
+ from io import BytesIO
25
+
26
+ # ============================== #
27
+ # INITIALIZE CLIP EMBEDDER #
28
+ # ============================== #
29
+ clip_embd = OpenCLIPEmbeddings()
30
+
31
+ # Configure logging
32
+ logging.basicConfig(
33
+ level=logging.DEBUG, # Use INFO or ERROR in production
34
+ format="%(asctime)s [%(levelname)s] %(message)s",
35
+ handlers=[
36
+ logging.FileHandler("app.log"),
37
+ logging.StreamHandler()
38
+ ]
39
+ )
40
+
41
+ logger = logging.getLogger(__name__)
42
+
43
+ load_dotenv()
44
+ # os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
45
+ groq_api_key = os.getenv("GROQ_API_KEY")
46
+
47
+ llm = ChatGroq(
48
+ model="meta-llama/llama-4-scout-17b-16e-instruct",
49
+ temperature=0,
50
+ max_tokens=None,
51
+ )
52
+
53
+ app = Flask(__name__)
54
+
55
+ pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
56
+ poppler_path = r"C:\poppler-23.11.0\Library\bin"
57
+
58
+ count = 0
59
+ PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"
60
+
61
+ OUTPUT_FOLDER = "OUTPUTS"
62
+ DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "DETECTED_IMAGE")
63
+ IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
64
+ JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
65
+
66
+
67
+ for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
68
+ os.makedirs(path, exist_ok=True)
69
+
70
+ # # Model Initialization
71
+ # try:
72
+ # smolvlm256m_processor = AutoProcessor.from_pretrained(
73
+ # "HuggingFaceTB/SmolVLM-256M-Instruct")
74
+ # # smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
75
+ # smolvlm256m_model = AutoModelForVision2Seq.from_pretrained(
76
+ # "HuggingFaceTB/SmolVLM-256M-Instruct",
77
+ # torch_dtype=torch.bfloat16 if hasattr(
78
+ # torch, "bfloat16") else torch.float32,
79
+ # _attn_implementation="eager"
80
+ # ).to("cpu")
81
+ # except Exception as e:
82
+ # raise RuntimeError(f"❌ Failed to load SmolVLM model: {str(e)}")
83
+
84
+ # SmolVLM Image Captioning functioning
85
+ # def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
86
+ # try:
87
+ # # Ensure exactly one <image> token
88
+ # if "<image>" not in prompt:
89
+ # prompt = f"<image> {prompt.strip()}"
90
+
91
+ # num_image_tokens = prompt.count("<image>")
92
+ # if num_image_tokens != 1:
93
+ # raise ValueError(
94
+ # f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
95
+
96
+ # inputs = smolvlm256m_processor(
97
+ # images=[image], text=[prompt], return_tensors="pt").to("cpu")
98
+ # output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
99
+ # return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
100
+ # except Exception as e:
101
+ # return f"❌ Error during caption generation: {str(e)}"
102
+
103
+ def classify_image_type(description_or_name: str) -> str:
104
+ desc = description_or_name.lower()
105
+
106
+ sprite_keywords = ["sprite", "character", "animal", "person", "creature", "robot", "figure"]
107
+ backdrop_keywords = ["background", "scene", "forest", "city", "room", "sky", "mountain", "village"]
108
+ code_block_keywords = [
109
+ "move", "turn", "wait", "repeat", "if", "else", "broadcast",
110
+ "glide", "change", "forever", "when", "switch", "costume",
111
+ "say", "think", "stop", "clone", "touching", "sensing",
112
+ "scratch", "block", "code", "set", "variable"
113
+ ]
114
+
115
+ if any(kw in desc for kw in code_block_keywords):
116
+ return "code-block"
117
+ elif any(kw in desc for kw in sprite_keywords):
118
+ return "sprite"
119
+ elif any(kw in desc for kw in backdrop_keywords):
120
+ return "backdrop"
121
+ else:
122
+ return "unknown"
123
+
124
+ class GameState(TypedDict):
125
+ # project_json: dict
126
+ # description: str
127
+ # project_id: str
128
+ image: str
129
+ pseudo_node: Optional[Dict]
130
+
131
+ # Refined SYSTEM_PROMPT with more explicit Scratch JSON rules, especially for variables
132
+ SYSTEM_PROMPT = """
133
+ You are an expert AI assistant named GameScratchAgent, specialized in generating and modifying Scratch-VM 3.x game project JSON.
134
+ Your core task is to process game descriptions and existing Scratch JSON structures, then produce or update JSON segments accurately.
135
+ You possess deep knowledge of Scratch 3.0 project schema, informed by comprehensive reference materials. When generating or modifying the `blocks` section, pay extremely close attention to the following:
136
+
137
+ **Scratch Project JSON Schema Rules:**
138
+
139
+ 1. **Target Structure (`project.json`'s `targets` array):**
140
+ * Each object in the `targets` array represents a Stage or a Sprite.
141
+ * `isStage`: A boolean indicating if the target is the Stage (`true`) or a Sprite (`false`).
142
+ * `name`: The name of the Stage (e.g., `"Stage"`) or the Sprite (e.g., `"Cat"`). This property replaces `objName` found in older Scratch versions.
143
+ * `variables` dictionary: This dictionary maps unique variable IDs to arrays `[variable_name, initial_value, isCloudVariable?]`.
144
+ * `variable_name`: The user-defined name of the variable.
145
+ * `initial_value`: The variable's initial value, which can be a number or a string.
146
+ * `isCloudVariable?`: (Optional) A boolean indicating if it's a cloud variable (`true`) or a local variable (`false` or absent for regular variables).
147
+ * Example: `"myVarId123": ["score", 0]`, `"cloudVarId456": ["☁ High Score", "54", true]`
148
+ * `lists` dictionary: This dictionary maps unique list IDs to arrays `[list_name, [item1, item2, ...]]`.
149
+ * Example: `"myListId789": ["my list", ["apple", "banana"]]`
150
+ * `broadcasts` dictionary: This dictionary maps unique broadcast IDs to their names.
151
+ * Example: `"myBroadcastId": "Game Over"`
152
+ * `blocks` dictionary: This dictionary contains all the blocks belonging to this target. Keys are block IDs, values are block objects.
153
+
154
+ 2. **Block Structure (within a `target`'s `blocks` dictionary):**
155
+ * Every block object must have the following core properties:
156
+ * [cite_start]`opcode`: A unique internal identifier for the block's specific functionality (e.g., `"motion_movesteps"`, `"event_whenflagclicked"`)[cite: 31, 18, 439, 452].
157
+ * `parent`: The ID of the block directly above it in the script stack (or `null` for a top-level block).
158
+ * `next`: The ID of the block directly below it in the script stack (or `null` for the end of a stack).
159
+ * `inputs`: An object defining values or blocks plugged into the block's input slots. Values are **arrays**.
160
+ * `fields`: An object defining dropdown menu selections or direct internal values within the block. Values are **arrays**.
161
+ * `shadow`: `true` if it's a shadow block (e.g., a default number input that can be replaced by another block), `false` otherwise.
162
+ * `topLevel`: `true` if it's a hat block or a standalone block (not connected to a parent), `false` otherwise.
163
+
164
+ 3. **`inputs` Property Details (for blocks plugged into input slots):**
165
+ * **Direct Block Connection (Reporter/Boolean block plugged in):**
166
+ * Format: `"<INPUT_NAME>": [1, "<blockId_of_plugged_block>"]`
167
+ * Example: `"CONDITION": [1, "someBooleanBlockId"]` (e.g., for an `if` block).
168
+ * **Literal Value Input (Shadow block with a literal):**
169
+ * Format: `"<INPUT_NAME>": [1, [<type_code>, "<value_string>"]]`
170
+ * `type_code`: A numeric code representing the data type. Common codes include: `4` for number, `7` for string/text, `10` for string/message.
171
+ * `value_string`: The literal value as a string.
172
+ * Examples:
173
+ * Number: `"STEPS": [1, [4, "10"]]` (for `move 10 steps` block).
174
+ * String/Text: `"MESSAGE": [1, [7, "Hello"]]` (for `say Hello` block).
175
+ * String/Message (common for text inputs): `"MESSAGE": [1, [10, "Hello!"]]` (for `say Hello! for 2 secs`).
176
+ * **C-Block Substack (blocks within a loop or conditional):**
177
+ * Format: `"<SUBSTACK_NAME>": [2, "<blockId_of_first_block_in_substack>"]`
178
+ * Common `SUBSTACK_NAME` values are `SUBSTACK` (for `if`, `forever`, `repeat`) and `SUBSTACK2` (for `else` in `if else`).
179
+ * Example: `"SUBSTACK": [2, "firstBlockInLoopId"]`
180
+
181
+ 4. **`fields` Property Details (for dropdowns or direct internal values):**
182
+ * Used for dropdown menus, variable names, list names, or other static selections directly within the block.
183
+ * Format: `"<FIELD_NAME>": ["<selected_value>", null]`
184
+ * Examples:
185
+ * Dropdown: `"KEY_OPTION": ["space", null]` (for `when space key pressed`).
186
+ * Variable Name: `"VARIABLE": ["score", null]` (for `set score to 0`).
187
+ * Direction (specific motion block): `"FORWARD_BACKWARD": ["forward", null]` (for `go forward layers`).
188
+
189
+ 5. **Unique IDs:**
190
+ * All block IDs, variable IDs, and list IDs must be unique strings (e.g., "myBlock123", "myVarId456", "myListId789"). Do NOT use placeholder strings like "block_id_here".
191
+
192
+ 6. **No Nested `blocks` Dictionary:**
193
+ * The `blocks` dictionary should only appear once per `target` (sprite/stage). Do NOT nest a `blocks` dictionary inside an individual block definition. Blocks that are part of a substack are linked via the `SUBSTACK` input.
194
+
195
+ 7. **Asset Properties (for Costumes/Sounds):**
196
+ * `assetId`, `md5ext`, `bitmapResolution`, `rotationCenterX`/`rotationCenterY` should be correctly associated with costume and sound objects within the `costumes` and `sounds` arrays.
197
+
198
+ **General Principles and Important Considerations:**
199
+ * **Backward Compatibility:** Adhere strictly to existing Scratch 3.0 opcodes and schema to ensure backward compatibility with older projects. [cite_start]Opcodes must remain consistent to prevent previously saved projects from failing to load or behaving unexpectedly[cite: 18, 19, 25, 65].
200
+ * **Forgiving Inputs:** Recognize that Scratch is designed to be "forgiving in its interpretation of inputs." [cite_start]The Scratch VM handles potentially "invalid" inputs gracefully (e.g., converting a number to a string if expected, returning default values like zero or empty strings, or performing no action) rather than crashing[cite: 20, 21, 22, 38, 39, 41]. This implies that precise type matching for inputs might be handled internally by Scratch, allowing for some flexibility in how values are provided, but the agent should aim for the most common and logical type.
201
+ """
202
+
203
+ SYSTEM_PROMPT_JSON_CORRECTOR ="""
204
+ You are an assistant that outputs JSON responses strictly following the given schema.
205
+ If the JSON you produce has any formatting errors, missing required fields, or invalid structure, you must identify the problems and correct them.
206
+ Always return only valid JSON that fully conforms to the schema below, enclosed in triple backticks (```), without any extra text or explanation.
207
+
208
+ If you receive an invalid or incomplete JSON response, fix it by:
209
+ - Adding any missing required fields with appropriate values.
210
+ - Correcting syntax errors such as missing commas, brackets, or quotes.
211
+ - Ensuring the JSON structure matches the schema exactly.
212
+
213
+ Remember: Your output must be valid JSON only, ready to be parsed without errors.
214
+ """
215
+ # debugger and resolver agent for Scratch 3.0
216
+ agent_json_resolver = create_react_agent(
217
+ model=llm,
218
+ tools=[], # No specific tools are defined here, but could be added later
219
+ prompt=SYSTEM_PROMPT_JSON_CORRECTOR
220
+ )
221
+
222
+ # Helper function to load the block catalog from a JSON file
223
+ def _load_block_catalog(file_path: str) -> Dict:
224
+ """Loads the Scratch block catalog from a specified JSON file."""
225
+ try:
226
+ with open(file_path, 'r') as f:
227
+ catalog = json.load(f)
228
+ logger.info(f"Successfully loaded block catalog from {file_path}")
229
+ return catalog
230
+ except FileNotFoundError:
231
+ logger.error(f"Error: Block catalog file not found at {file_path}")
232
+ # Return an empty dict or raise an error, depending on desired behavior
233
+ return {}
234
+ except json.JSONDecodeError as e:
235
+ logger.error(f"Error decoding JSON from {file_path}: {e}")
236
+ return {}
237
+ except Exception as e:
238
+ logger.error(f"An unexpected error occurred while loading {file_path}: {e}")
239
+ return {}
240
+
241
+ # --- Global variable for the block catalog ---
242
+ ALL_SCRATCH_BLOCKS_CATALOG = {}
243
+ BLOCK_CATALOG_PATH = r"blocks\blocks.json" # Define the path to your JSON file
244
+ HAT_BLOCKS_PATH = r"blocks\hat_blocks.json" # Path to the hat blocks JSON file
245
+ STACK_BLOCKS_PATH = r"blocks\stack_blocks.json" # Path to the stack blocks JSON file
246
+ REPORTER_BLOCKS_PATH = r"blocks\reporter_blocks.json" # Path to the reporter blocks JSON file
247
+ BOOLEAN_BLOCKS_PATH = r"blocks\boolean_blocks.json" # Path to the boolean blocks JSON file
248
+ C_BLOCKS_PATH = r"blocks\c_blocks.json" # Path to the C blocks JSON file
249
+ CAP_BLOCKS_PATH = r"blocks\cap_blocks.json" # Path to the cap blocks JSON file
250
+
251
+ # Load the block catalogs from their respective JSON files
252
+ hat_block_data = _load_block_catalog(HAT_BLOCKS_PATH)
253
+ hat_description = hat_block_data["description"]
254
+ # hat_opcodes_functionalities = "\n".join([f" - Opcode: {block['op_code']}, functionality: {block['functionality']}" for block in hat_block_data["blocks"]])
255
+ hat_opcodes_functionalities = os.path.join(HAT_BLOCKS_PATH, "hat_blocks.txt")
256
+ print(f"\nhat_opcodes_functionalities:\n {hat_opcodes_functionalities}\n")
257
+
258
+ boolean_block_data = _load_block_catalog(BOOLEAN_BLOCKS_PATH)
259
+ boolean_description = boolean_block_data["description"]
260
+ # boolean_opcodes_functionalities = "\n".join([f" - Opcode: {block['op_code']}, functionality: {block['functionality']}" for block in boolean_block_data["blocks"]])
261
+ boolean_opcodes_functionalities = os.path.join(BOOLEAN_BLOCKS_PATH, "boolean_blocks.txt")
262
+ print(f"\n\n\nboolean_opcodes_functionalities:\n {boolean_opcodes_functionalities}")
263
+
264
+ c_block_data = _load_block_catalog(C_BLOCKS_PATH)
265
+ c_description = c_block_data["description"]
266
+ # c_opcodes_functionalities = "\n".join([f" - Opcode: {block['op_code']}, functionality: {block['functionality']}" for block in c_block_data["blocks"]])
267
+ c_opcodes_functionalities = os.path.join(C_BLOCKS_PATH, "c_blocks.txt")
268
+ print(f"c_opcodes_functionalities:\n\n{c_opcodes_functionalities}\n")
269
+
270
+ cap_block_data = _load_block_catalog(CAP_BLOCKS_PATH)
271
+ cap_description = cap_block_data["description"]
272
+ # cap_opcodes_functionalities = "\n".join([f" - Opcode: {block['op_code']}, functionality: {block['functionality']}" for block in cap_block_data["blocks"]])
273
+ cap_opcodes_functionalities = os.path.join(CAP_BLOCKS_PATH, "cap_blocks.txt")
274
+ print(f"cap_opcodes_functionalities:\n\n{cap_opcodes_functionalities}\n")
275
+
276
+ reporter_block_data = _load_block_catalog(REPORTER_BLOCKS_PATH)
277
+ reporter_description = reporter_block_data["description"]
278
+ # reporter_opcodes_functionalities = "\n".join([f" - Opcode: {block['op_code']}, functionality: {block['functionality']}" for block in reporter_block_data["blocks"]])
279
+ reporter_opcodes_functionalities = os.path.join(REPORTER_BLOCKS_PATH, "reporter_blocks.txt")
280
+ print(f"reporter_opcodes_functionalities:\n\n{reporter_opcodes_functionalities}\n")
281
+
282
+ stack_block_data = _load_block_catalog(STACK_BLOCKS_PATH)
283
+ stack_description = stack_block_data["description"]
284
+ # stack_opcodes_functionalities = "\n".join([f" - Opcode: {block['op_code']}, functionality: {block['functionality']} e.g. {block['example_standalone']}" for block in stack_block_data["blocks"]])
285
+ stack_opcodes_functionalities = os.path.join(STACK_BLOCKS_PATH, "stack_blocks.txt")
286
+ print(f"stack_opcodes_functionalities:\n\n{stack_opcodes_functionalities}\n")
287
+
288
+ # This makes ALL_SCRATCH_BLOCKS_CATALOG available globally
289
+ # ALL_SCRATCH_BLOCKS_CATALOG = _load_block_catalog(BLOCK_CATALOG_PATH)
290
+
291
+ # Helper function to extract JSON from LLM response
292
+ def extract_json_from_llm_response(raw_response: str) -> dict:
293
+ # --- 1) Pull out the JSON code‑block if present ---
294
+ md = re.search(r"```(?:json)?\s*([\s\S]*?)\s*```", raw_response)
295
+ json_string = md.group(1).strip() if md else raw_response
296
+
297
+ # --- 2) Trim to the outermost { … } so we drop any prefix/suffix junk ---
298
+ first, last = json_string.find('{'), json_string.rfind('}')
299
+ if 0 <= first < last:
300
+ json_string = json_string[first:last+1]
301
+
302
+ # --- 3) PRE‑CLEANUP: remove stray assistant{…}, rogue assistant keys, fix boolean quotes ---
303
+ json_string = re.sub(r'\b\w+\s*{', '{', json_string)
304
+ json_string = re.sub(r'"assistant"\s*:', '', json_string)
305
+ json_string = re.sub(r'\b(false|true)"', r'\1', json_string)
306
+ logger.debug("Ran pre‑cleanup for stray tokens and boolean quotes.")
307
+
308
+ # --- 3.1) Fix stray inner quotes at start of name/list values ---
309
+ # e.g., { "name": " \"recent_scoress\"", ... } → "recent_scoress"
310
+ json_string = re.sub(
311
+ r'("name"\s*:\s*")\s*"',
312
+ r'\1',
313
+ json_string
314
+ )
315
+
316
+ # --- 4) Escape all embedded quotes in any `logic` value up to the next key ---
317
+ def _esc(m):
318
+ prefix, body = m.group(1), m.group(2)
319
+ return prefix + body.replace('"', r'\"')
320
+ json_string = re.sub(
321
+ r'("logic"\s*:\s*")([\s\S]+?)(?=",\s*"[A-Za-z_]\w*"\s*:\s*)',
322
+ _esc,
323
+ json_string
324
+ )
325
+ logger.debug("Escaped embedded quotes in logic fields.")
326
+
327
+ logger.debug("Quoted unquoted keys.")
328
+
329
+ # --- 6) Remove trailing commas before } or ] ---
330
+ json_string = re.sub(r',\s*(?=[}\],])', '', json_string)
331
+ json_string = re.sub(r',\s*,', ',', json_string)
332
+ logger.debug("Removed trailing commas.")
333
+
334
+ # --- 7) Balance braces: drop extra } at end if needed ---
335
+ ob, cb = json_string.count('{'), json_string.count('}')
336
+ if cb > ob:
337
+ excess = cb - ob
338
+ json_string = json_string.rstrip()[:-excess]
339
+ logger.debug(f"Stripped {excess} extra closing brace(s).")
340
+
341
+ # --- 8) Escape literal newlines in *all* string values ---
342
+ json_string = re.sub(
343
+ r'"((?:[^"\\]|\\.)*?)"',
344
+ lambda m: '"' + m.group(1).replace('\n', '\\n').replace('\r', '\\r') + '"',
345
+ json_string,
346
+ flags=re.DOTALL
347
+ )
348
+ logger.debug("Escaped newlines in strings.")
349
+
350
+ # --- 9) Final parse attempt ---
351
+ try:
352
+ return json.loads(json_string)
353
+ except json.JSONDecodeError:
354
+ logger.error("Sanitized JSON still invalid:\n%s", json_string)
355
+ raise
356
+
357
+ # Main agent of the system agent for Scratch 3.0
358
+ agent = create_react_agent(
359
+ model=llm,
360
+ tools=[], # No specific tools are defined here, but could be added later
361
+ prompt=SYSTEM_PROMPT
362
+ )
363
+
364
+ # Node 6: Logic updating if any issue here
365
+ def plan_logic_aligner_node(state: GameState):
366
+ logger.info("--- Running plan_logic_aligner_node ---")
367
+
368
+ image = state.get("image", "")
369
+
370
+ refinement_prompt = f"""
371
+ You are an expert in Scratch 3.0 game development, specializing in understanding block relationships (stacked, nested).
372
+ "Analyze the Scratch code-block image and generate Pseudo-Code for what this logic appears to be doing."
373
+ From Image, you also have to detect a value of Key given in Text form "Script for: ". Below is the example
374
+ Example: "Script for: Bear", "Script for:" is a key and "Bear" is value.
375
+ --- Scratch 3.0 Block Reference ---
376
+ ### Hat Blocks
377
+ Description: {hat_description}
378
+ Blocks:
379
+ {hat_opcodes_functionalities}
380
+
381
+ ### Boolean Blocks
382
+ Description: {boolean_description}
383
+ Blocks:
384
+ {boolean_opcodes_functionalities}
385
+
386
+ ### C Blocks
387
+ Description: {c_description}
388
+ Blocks:
389
+ {c_opcodes_functionalities}
390
+
391
+ ### Cap Blocks
392
+ Description: {cap_description}
393
+ Blocks:
394
+ {cap_opcodes_functionalities}
395
+
396
+ ### Reporter Blocks
397
+ Description: {reporter_description}
398
+ Blocks:
399
+ {reporter_opcodes_functionalities}
400
+
401
+ ### Stack Blocks
402
+ Description: {stack_description}
403
+ Blocks:
404
+ {stack_opcodes_functionalities}
405
+ -----------------------------------
406
+
407
+ Your task is to:
408
+ If you don't find any "Code-Blocks" then,
409
+ **Don't generate Pseudo Code, and pass the message "No Code-blocks" find...
410
+ If you find any "Code-Blocks" then,
411
+ 1. **Refine the 'logic'**: Make it precise, accurate, and fully aligned with the Game Description. Use Scratch‑consistent verbs and phrasing. **Do NOT** use raw double‑quotes inside the logic string.
412
+
413
+ 2. **Structural requirements**:
414
+ - **Numeric values** `(e.g., 0, 5, 0.2, -130)` **must** be in parentheses: `(0)`, `(5)`, `(0.2)`, `(-130)`.
415
+ - **AlphaNumeric values** `(e.g., hello, say 5, 4, hi!)` **must** be in parentheses: `(hello)`, `(say 5)`, `(4)`, `(hi!)`.
416
+ - **Variables** must be in the form `[variable v]` (e.g., `[score v]`), even when used inside expressions two example use `set [score v] to (1)` or `show variable ([speed v])`.
417
+ - **Dropdown options** must be in the form `[option v]` (e.g., `[Game Start v]`, `[blue sky v]`). example use `when [space v] key pressed`.
418
+ - **Reporter blocks** used as inputs must be double‑wrapped: `((x position))`, `((y position))`. example use `if <((y position)) = (-130)> then` or `(((x position)) * (1))`.
419
+ - **Boolean blocks** in conditions must be inside `< >`, including nested ones: `<not <condition>>`, `<<cond1> and <cond2>>`,`<<cond1> or <cond2>>`.
420
+ - **Other Boolean blocks** in conditions must be inside `< >`, including nested ones or values or variables: `<(block/value/variable) * (block/value/variable)>`,`<(block/value/variable) < (block/value/variable)>`, and example of another variable`<[apple v] contains [a v]?>`.
421
+ - **Operator expressions** must use explicit Scratch operator blocks, e.g.:
422
+ ```
423
+ (([ballSpeed v]) * (1.1))
424
+ ```
425
+ - **Every hat block script must end** with a final `end` on its own line.
426
+
427
+ 3. **Pseudo‑code formatting**:
428
+ - Represent each block or nested block on its own line.
429
+ - Indent nested blocks by 4 spaces under their parent (`forever`, `if`, etc.).
430
+ - No comments or explanatory text—just the block sequence.
431
+ - a natural language breakdown of each step taken after the event, formatted as a multi-line string representing pseudo-code. Ensure clarity and granularity—each described action should map closely to a Scratch block or tight sequence.
432
+
433
+ 4. **Logic content**:
434
+ - Build clear flow for mechanics (movement, jumping, flying, scoring, collisions).
435
+ - Match each action closely to a Scratch block or tight sequence.
436
+ - Do **NOT** include any justification or comments—only the raw logic.
437
+
438
+ 5. **Examples for reference**:
439
+ **Correct** pattern for a simple start script:
440
+ ```
441
+ when green flag clicked
442
+ switch backdrop to [blue sky v]
443
+ set [score v] to (0)
444
+ show variable [score v]
445
+ broadcast [Game Start v]
446
+ end
447
+ ```
448
+ **Correct** pattern for updating the high score variable handling:
449
+ ```
450
+ when I receive [Game Over v]
451
+ if <((score)) > (([High Score v]))> then
452
+ set [High Score v] to ([score v])
453
+ end
454
+ switch backdrop to [Game Over v]
455
+ end
456
+ ```
457
+ **Correct** pattern for level up and increase difficulty use:
458
+ ```
459
+ when I receive [Level Up v]
460
+ change [level v] by (1)
461
+ set [ballSpeed v] to ((([ballSpeed v]) * (1.1)))
462
+ end
463
+ ```
464
+ **Correct** pattern for jumping mechanics use:
465
+ ```
466
+ when [space v] key pressed
467
+ if <((y position)) = (-100)> then
468
+ repeat (5)
469
+ change y by (100)
470
+ wait (0.1) seconds
471
+ change y by (-100)
472
+ wait (0.1) seconds
473
+ end
474
+ end
475
+ end
476
+ ```
477
+ **Correct** pattern for continuos moving objects use:
478
+ ```
479
+ when green flag clicked
480
+ go to x: (240) y: (-100)
481
+ set [speed v] to (-5)
482
+ show variable [speed v]
483
+ forever
484
+ change x by ([speed v])
485
+ if <((x position)) < (-240)> then
486
+ go to x: (240) y: (-100)
487
+ end
488
+ end
489
+ end
490
+ ```
491
+ **Correct** pattern for continuos moving objects use:
492
+ ```
493
+ when green flag clicked
494
+ go to x: (240) y: (-100)
495
+ set [speed v] to (-5)
496
+ show variable [speed v]
497
+ forever
498
+ change x by ([speed v])
499
+ if <((x position)) < (-240)> then
500
+ go to x: (240) y: (-100)
501
+ end
502
+ end
503
+ end
504
+ ```
505
+ 6. **Donot** add any explaination of logic or comments to justify or explain just put the logic content in the json.
506
+ 7. **Output**:
507
+ Return **only** a JSON object, using double quotes everywhere:
508
+ ```json
509
+ {{
510
+ "refined_logic":{{
511
+ "name_variable": 'Value of "Sript for: "',
512
+ "pseudocode":"…your fully‑formatted pseudo‑code here…",
513
+ }}
514
+ }}
515
+ ```
516
+ """
517
+ image_input = {
518
+ "type": "image_url",
519
+ "image_url": {
520
+ "url": f"data:image/png;base64,{image}"
521
+ }
522
+ }
523
+
524
+ content = [
525
+ {"type": "text", "text": refinement_prompt},
526
+ image_input
527
+ ]
528
+
529
+ try:
530
+ # Invoke the main agent for logic refinement and relationship identification
531
+ response = agent.invoke({"messages": [{"role": "user", "content": content}]})
532
+ llm_output_raw = response["messages"][-1].content.strip()
533
+
534
+ parsed_llm_output = extract_json_from_llm_response(llm_output_raw)
535
+
536
+ result = parsed_llm_output
537
+
538
+ print(f"result:\n\n {result}")
539
+ return result
540
+ except Exception as e:
541
+ logger.error(f"❌ plan_logic_aligner_node failed: {str(e)}")
542
+ return {"error": str(e)}
543
+ except json.JSONDecodeError as error_json:
544
+ # If JSON parsing fails, use the json resolver agent
545
+ correction_prompt = (
546
+ "Your task is to correct the provided JSON string to ensure it is **syntactically perfect and adheres strictly to JSON rules**.\n"
547
+ "It must be a JSON object with `refined_logic` (string) and `block_relationships` (array of objects).\n"
548
+ f"- **Error Details**: {error_json}\n\n"
549
+ "**Strict Instructions for your response:**\n"
550
+ "1. **ONLY** output the corrected JSON. Do not include any other text or explanations.\n"
551
+ "2. Ensure all keys and string values are enclosed in **double quotes**. Escape internal quotes (`\\`).\n"
552
+ "3. No trailing commas. Correct nesting.\n\n"
553
+ "Here is the problematic JSON string to correct:\n"
554
+ f"```json\n{llm_output_raw}\n```\n"
555
+ "Corrected JSON:\n"
556
+ )
557
+ try:
558
+ correction_response = agent_json_resolver.invoke({"messages": [{"role": "user", "content": correction_prompt}]})
559
+ corrected_output = extract_json_from_llm_response(correction_response["messages"][-1].content)
560
+ #block_relationships = corrected_output.get("block_relationships", [])
561
+ result = {
562
+ #"image_path": image_path,
563
+ "pseudo_code": corrected_output
564
+ }
565
+
566
+ return result
567
+
568
+ except Exception as e_corr:
569
+ logger.error(f"Failed to correct JSON output for even after retry: {e_corr}")
570
+
571
+ '''
572
+ def get_desc_pseudo(image_path: str, index: int = 1) -> dict:
573
+ """
574
+ Takes a path to a code-block image and returns a dict with:
575
+ - 'pseudo_code': pseudo-code representing logic in Scratch block format
576
+ If output_pseudo_path is provided, saves the output to a JSON file with given structure.
577
+ """
578
+ try:
579
+ image = Image.open(image_path).convert("RGB")
580
+
581
+ # Load image and encode to base64
582
+ with open(image_path, "rb") as image_file:
583
+ image_bytes = image_file.read()
584
+ img_base64 = base64.b64encode(image_bytes).decode("utf-8")
585
+
586
+ prompt_desc = "Analyze this Scratch code-block image and generate a short caption of what this logic appears to be doing."
587
+ prompt_pseudo = """
588
+ Convert this Scratch code-block image into clear pseudo-code in Scratch format.
589
+ Use Scratch-style syntax (e.g., 'when green flag clicked', 'repeat', 'move (10)',
590
+ 'if <condition> then', etc.) in a multi-line string."""
591
+
592
+ system_prompt = """
593
+ You are an expert in Scratch 3.0 logic reconstruction. You will receive an image of a code block.
594
+ 1. First describe briefly what this script is doing.
595
+ 2. Then generate Scratch-like pseudo-code line-by-line, matching blocks in the image.
596
+ Return JSON with 'pseudo_code'.
597
+ """
598
+
599
+ # Build LangChain agent
600
+ agent = create_react_agent(
601
+ model=llm,
602
+ tools=[],
603
+ prompt=system_prompt
604
+ )
605
+
606
+ content = [
607
+ {"type": "text", "text": prompt_desc},
608
+ {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_base64}"}}
609
+ ]
610
+ desc_response = agent.invoke({"messages": [{"role": "user", "content": content}]})
611
+ caption = desc_response["messages"][-1].content.strip()
612
+
613
+ content_pseudo = [
614
+ {"type": "text", "text": prompt_pseudo},
615
+ {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_base64}"}}
616
+ ]
617
+ pseudo_response = agent.invoke({"messages": [{"role": "user", "content": content_pseudo}]})
618
+ pseudo_code = pseudo_response["messages"][-1].content.strip()
619
+
620
+ result = {
621
+ "image_path": image_path,
622
+ "caption": caption,
623
+ "pseudo_code": pseudo_code
624
+ }
625
+ # --- Fixed output path ---
626
+ output_json_path = os.path.join("outputs", "pseudo_output.json")
627
+ os.makedirs(os.path.dirname(output_json_path), exist_ok=True)
628
+
629
+ if os.path.exists(output_json_path):
630
+ with open(output_json_path, "r") as f:
631
+ existing = json.load(f)
632
+ else:
633
+ existing = {"plan": []}
634
+
635
+ pseudo_key = f"pseudo{index}"
636
+ existing["plan"].append({pseudo_key: result})
637
+
638
+ with open(output_json_path, "w") as f:
639
+ json.dump(existing, f, indent=2)
640
+
641
+ logger.info(f"✅ Saved pseudo-code to: {output_json_path}")
642
+ return result
643
+
644
+ except Exception as e:
645
+ logger.error(f"❌ get_desc_pseudo failed for {image_path}: {e}")
646
+ return {
647
+ "image_path": image_path,
648
+ "error": str(e)
649
+ }'''
650
+
651
+ scratch_keywords = [
652
+ "move", "turn", "wait", "repeat", "if", "else", "broadcast",
653
+ "glide", "change", "forever", "when", "switch",
654
+ "next costume", "set", "show", "hide", "play sound",
655
+ "go to", "x position", "y position", "think", "say",
656
+ "variable", "stop", "clone",
657
+ "touching", "sensing", "pen", "clear","Scratch","Code","scratch blocks"
658
+ ]
659
+
660
+ # --- FUNCTION: Extract images from saved PDF ---
661
+ def extract_images_from_pdf(pdf_path, final_json_path_2):
662
+ ''' Extract images from PDF and generate structured sprite JSON '''
663
+ try:
664
+ pdf_filename = os.path.splitext(os.path.basename(pdf_path))[0] # e.g., "scratch_crab"
665
+ pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
666
+
667
+ # Create subfolders
668
+ extracted_image_subdir = os.path.join(DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
669
+ json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
670
+ os.makedirs(extracted_image_subdir, exist_ok=True)
671
+ os.makedirs(json_subdir, exist_ok=True)
672
+
673
+ # Output paths
674
+ output_json_path = os.path.join(json_subdir, "extracted.json")
675
+ final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
676
+ final_json_path_2 = os.path.join(json_subdir, "extracted_sprites_2.json")
677
+
678
+ try:
679
+ elements = partition_pdf(
680
+ filename=pdf_path,
681
+ strategy="hi_res",
682
+ extract_image_block_types=["Image"],
683
+ extract_image_block_to_payload=True, # Set to True to get base64 in output
684
+ )
685
+ except Exception as e:
686
+ raise RuntimeError(
687
+ f"❌ Failed to extract images from PDF: {str(e)}")
688
+
689
+ try:
690
+ with open(output_json_path, "w") as f:
691
+ json.dump([element.to_dict()
692
+ for element in elements], f, indent=4)
693
+ except Exception as e:
694
+ raise RuntimeError(f"❌ Failed to write extracted.json: {str(e)}")
695
+
696
+ try:
697
+ # Display extracted images
698
+ with open(output_json_path, 'r') as file:
699
+ file_elements = json.load(file)
700
+ except Exception as e:
701
+ raise RuntimeError(f"❌ Failed to read extracted.json: {str(e)}")
702
+
703
+ # Prepare manipulated sprite JSON structure
704
+ manipulated_json = {}
705
+
706
+ # SET A SYSTEM PROMPT
707
+ system_prompt = """
708
+ You are an expert in visual scene understanding.
709
+ Your Job is to analyze an image and respond acoording if asked for name give simple name by analyzing it and if ask for descrption generate a short description covering its elements.
710
+
711
+ Guidelines:
712
+ - Focus only the images given in Square Shape.
713
+ - Don't Consider Blank areas in Image as.
714
+ - Don't include generic summary or explanation outside the fields.
715
+ Return only string.
716
+ """
717
+ agent = create_react_agent(
718
+ model=llm,
719
+ tools=[],
720
+ prompt=system_prompt
721
+ )
722
+
723
+ # If JSON already exists, load it and find the next available Sprite number
724
+ if os.path.exists(final_json_path):
725
+ with open(final_json_path, "r") as existing_file:
726
+ manipulated = json.load(existing_file)
727
+ # Determine the next available index (e.g., Sprite 4 if 1–3 already exist)
728
+ existing_keys = [int(k.replace("Sprite ", ""))
729
+ for k in manipulated.keys()]
730
+ start_count = max(existing_keys, default=0) + 1
731
+ else:
732
+ start_count = 1
733
+
734
+ sprite_count = start_count
735
+ for i, element in enumerate(file_elements):
736
+ if "image_base64" in element["metadata"]:
737
+ try:
738
+ image_data = base64.b64decode(
739
+ element["metadata"]["image_base64"])
740
+ image = Image.open(io.BytesIO(image_data)).convert("RGB")
741
+
742
+ image = upscale_image(image, scale=2)
743
+ # image.show(title=f"Extracted Image {i+1}")
744
+ image_path = os.path.join(extracted_image_subdir, f"Sprite_{i+1}.png")
745
+ image.save(image_path) # don't need to store image in local folder, process it from variable
746
+
747
+ with open(image_path, "rb") as image_file:
748
+ image_bytes = image_file.read()
749
+ img_base64 = base64.b64encode(image_bytes).decode("utf-8")
750
+
751
+ # buffered = io.BytesIO()
752
+ # image.save(buffered, format="PNG")
753
+ # img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
754
+ # description = get_smolvlm_caption(image, prompt="Give a brief Description")
755
+ # name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
756
+
757
+ # def clean_caption_output(raw_output: str, prompt: str) -> str:
758
+ # answer = raw_output.replace(prompt, '').replace(
759
+ # "<image>", '').strip(" :-\n")
760
+ # return answer
761
+
762
+ # prompt_description = "Give a brief Captioning. If any Image include the text or any logical block structure give it name as default 'scratch blocks'"
763
+ # prompt_name = "give a short name caption of this Image. If any Image include the text or any logical block structure give it description as default 'scratch blocks'"
764
+
765
+ # content1 = [
766
+ # {
767
+ # "type": "text",
768
+ # "text": f"{prompt_description}"
769
+ # },
770
+ # {
771
+ # "type": "image_url",
772
+ # "image_url": {
773
+ # "url": f"data:image/jpeg;base64,{img_base64}"
774
+ # }
775
+ # }
776
+ # ]
777
+ # response1 = agent.invoke(
778
+ # {"messages": [{"role": "user", "content": content1}]})
779
+ # # print(response1)
780
+ # description = response1["messages"][-1].content
781
+
782
+ # content2 = [
783
+ # {
784
+ # "type": "text",
785
+ # "text": f"{prompt_name}"
786
+ # },
787
+ # {
788
+ # "type": "image_url",
789
+ # "image_url": {
790
+ # "url": f"data:image/jpeg;base64,{img_base64}"
791
+ # }
792
+ # }
793
+ # ]
794
+
795
+ # response2 = agent.invoke(
796
+ # {"messages": [{"role": "user", "content": content2}]})
797
+ # # print(response2)
798
+ # name = response2["messages"][-1].content
799
+
800
+ # Combined Prompt for Name + Discription
801
+ prompt_combined = """
802
+ Analyze this image and return JSON with keys:# modify prompt for "name", if it detects "code-blocks only then give name as 'scratch-block'"
803
+ {
804
+ "name": "<short name or 'scratch blocks'>" ,
805
+ "description": "<short description>"
806
+ }
807
+ Guidelines:
808
+ - If image contains logical/code blocks from Scratch (e.g., move, turn, repeat, when clicked, etc.), use 'scratch-block' as the name.
809
+ - If image is a character, object, or backdrop, give an appropriate descriptive name instead.
810
+ - Avoid generic names like 'image1' or 'picture'.
811
+ - Keep the response strictly in JSON format.
812
+ """
813
+
814
+ content = [
815
+ {"type": "text", "text": prompt_combined},
816
+ {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{img_base64}"}}
817
+ ]
818
+
819
+ response = agent.invoke({"messages": [{"role": "user", "content": content}]})
820
+ result_json = json.loads(response["messages"][-1].content)
821
+ try:
822
+ name = result_json.get("name", "").strip()
823
+ description = result_json.get("description", "").strip()
824
+ except Exception as e:
825
+ logger.error(f"⚠️ Failed to extract name/description: {str(e)}")
826
+ name = "unknown"
827
+ description = "unknown"
828
+
829
+ # def is_valid_sprite_or_backdrop(desc):
830
+ # desc = desc.lower()
831
+ # sprite_keywords = ["character", "cartoon", "sprite", "figure", "animal", "person", "robot", "creature"]
832
+ # backdrop_keywords = ["scene", "background", "forest", "room", "underwater", "sky", "ocean", "mountain", "city", "village"]
833
+ # if any(kw in desc for kw in sprite_keywords + backdrop_keywords):
834
+ # return True
835
+ # return False
836
+
837
+ # if not is_valid_sprite_or_backdrop(description):
838
+ # logger.warning(f"🟡 Skipped non-sprite/backdrop image {i+1}: {description}")
839
+ # continue
840
+
841
+ # def is_scratch_code_block(desc):
842
+ # desc = desc.lower()
843
+ # scratch_block_keyword = ["Scratch", "Code", "scratch blocks","move", "steps", "degree",
844
+ # "turn","switch","go to","random position", "glide", "direction",
845
+ # "hide variable"]
846
+ # return any(kw in desc for kw in scratch_block_keyword)
847
+
848
+ # if is_scratch_code_block(description):
849
+ # logger.warning(f"⛔ Skipped code block image {i+1}: {description}")
850
+ # logger.info(is_scratch_code_block(description))
851
+ # continue
852
+
853
+ # raw_description = get_smolvlm_caption(image, prompt=prompt_description)
854
+ # raw_name = get_smolvlm_caption(image, prompt=prompt_name)
855
+
856
+ # description = clean_caption_output(raw_description, prompt_description)
857
+ # name = clean_caption_output(raw_name, prompt_name)
858
+
859
+ manipulated_json[f"Sprite {sprite_count}"] = {
860
+ "name": name,
861
+ "base64": element["metadata"]["image_base64"],
862
+ "file-path": pdf_dir_path,
863
+ "description": description
864
+ }
865
+ sprite_count += 1
866
+ except Exception as e:
867
+ print(f"⚠️ Error processing Sprite {i+1}: {str(e)}")
868
+
869
+ # # New dictionary to store only valid sprites
870
+ # filtered_sprites = {}
871
+ # for sprite_id, sprite_data in manipulated_json.items():
872
+ # desc = sprite_data.get("description", "").lower()
873
+ # # If no scratch block-like word found, accept this sprite
874
+ # if not any(keyword in desc for keyword in scratch_keywords):
875
+ # filtered_sprites[sprite_id] = sprite_data
876
+ # else:
877
+ # logger.info(f"🧱 Detected Scratch code block in: {sprite_id}, skipping...")
878
+
879
+ # Save manipulated JSON
880
+ with open(final_json_path, "w") as sprite_file:
881
+ json.dump(manipulated_json, sprite_file, indent=4)
882
+
883
+ def is_code_block(name: str) -> bool:
884
+ for kw in scratch_keywords:
885
+ if kw.lower() in name.lower():
886
+ return True
887
+ return False
888
+
889
+ # Filter out code block images
890
+ filtered_sprites = {}
891
+ for key, value in manipulated_json.items():
892
+ sprite_name = value.get("name", "")
893
+ if not is_code_block(sprite_name):
894
+ filtered_sprites[key] = value
895
+ else:
896
+ logger.info(f"🛑 Excluded code block-like image: {key}")
897
+
898
+ # if not any(is_code_block(value.get("name","")) for value in manipulated_json.values()):
899
+ # return jsonify({"message":"Invalid Content"}), 400
900
+ # if not filtered_sprites:
901
+ # return "Invalid Content", {}
902
+
903
+ # Overwrite with filtered content
904
+ with open(final_json_path_2, "w") as sprite_file:
905
+ json.dump(filtered_sprites, sprite_file, indent=4)
906
+ # print(f"✅ Manipulated sprite JSON saved: {final_json_path}")
907
+
908
+ return final_json_path, manipulated_json
909
+ except Exception as e:
910
+ raise RuntimeError(f"❌ Error in extract_images_from_pdf: {str(e)}")
911
+
912
+ def similarity_matching(input_json_path: str, project_folder:str) -> str:
913
+
914
+ logger.info("🔍 Running similarity matching...")
915
+
916
+ # ============================== #
917
+ # DEFINE PATHS #
918
+ # ============================== #
919
+ backdrop_images_path = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\Backdrops"
920
+ sprite_images_path = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\sprites"
921
+ # backdrop_images_path = os.getenv("BACKDROP_FOLDER_PATH", "/app/reference/backdrops")
922
+ # sprite_images_path = os.getenv("SPRITE_FOLDER_PATH", "/app/reference/sprites")
923
+ image_dirs = [backdrop_images_path, sprite_images_path]
924
+
925
+ project_json_path = os.path.join(project_folder, "project.json")
926
+
927
+ # ============================== #
928
+ # READ SPRITE METADATA #
929
+ # ============================== #
930
+ with open(input_json_path, 'r') as f:
931
+ sprites_data = json.load(f)
932
+
933
+ sprite_ids, texts, sprite_base64 = [], [], []
934
+ for sid, sprite in sprites_data.items():
935
+ sprite_ids.append(sid)
936
+ texts.append(
937
+ "This is " + sprite.get("description", sprite.get("name", "")))
938
+ sprite_base64.append(sprite["base64"])
939
+
940
+ # ========================================= #
941
+ # Walk folders to collect all image paths #
942
+ # ========================================= #
943
+ folder_image_paths = ['E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\badroom3.sb3\\8cc0b88d53345b3e337e8f028a32a4e7.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\baseball2.sb3\\7be1f5b3e682813dac1f297e52ff7dca.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\beach_malibu.sb3\\050615fe992a00d6af0e664e497ebf53.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\castle2.sb3\\951765ee7f7370f120c9df20b577c22f.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\hall.sb3\\ea86ca30b346f27ca5faf1254f6a31e3.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\Backdrops\\jungle.sb3\\f4f908da19e2753f3ed679d7b37650ca.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Batter.sprite3\\baseball_sprite_motion_1.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Bear.sprite3\\bear_motion_2.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Beetle.sprite3\\46d0dfd4ae7e9bfe3a6a2e35a4905eae.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\cat\\cat_motion_1.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Centaur.sprite3\\2373556e776cad3ba4d6ee04fc34550b.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Crab.sprite3\\bear_element.png', 'E:\\Pratham\\2025\\Harsh Sir\\Scratch Vision\\images\\sprites\\Soccer Ball.sprite3\\cat_football.png']
944
+ # for image_dir in image_dirs:
945
+ # for root, _, files in os.walk(image_dir):
946
+ # for fname in files:
947
+ # if fname.lower().endswith((".png", ".jpg", ".jpeg")):
948
+ # folder_image_paths.append(os.path.join(root, fname))
949
+ # print(f"\n\nfolder_image_paths: \n{folder_image_paths}")
950
+ """
951
+ # # ============================== #
952
+ # # EMBED FOLDER IMAGES (REF) #
953
+ # # ============================== #
954
+ img_features = clip_embd.embed_image(folder_image_paths)
955
+
956
+ # # ============================== #
957
+ # # Store image embeddings #
958
+ # # ============================== #
959
+ embedding_json = []
960
+ for i, path in enumerate(folder_image_paths):
961
+ embedding_json.append({
962
+ "name":os.path.basename(path),
963
+ "file-path": path,
964
+ "embeddings": list(img_features[i])
965
+ })
966
+
967
+ # # Save to embeddings.json
968
+ with open(f"{OUTPUT_FOLDER}/embeddings.json", "w") as f:
969
+ json.dump(embedding_json, f, indent=2)"""
970
+
971
+ # ============================== #
972
+ # DECODE SPRITE IMAGES #
973
+ # ============================== #
974
+ temp_dir = tempfile.mkdtemp()
975
+ sprite_image_paths = []
976
+ for idx, b64 in enumerate(sprite_base64):
977
+ image_data = base64.b64decode(b64.split(",")[-1])
978
+ img = Image.open(BytesIO(image_data)).convert("RGB")
979
+ temp_path = os.path.join(temp_dir, f"sprite_{idx}.png")
980
+ img.save(temp_path)
981
+ sprite_image_paths.append(temp_path)
982
+ print(f"\n\n\nSPRITE IMAGE PATHS: \n{sprite_image_paths}")
983
+
984
+ # ============================== #
985
+ # EMBED SPRITE IMAGES #
986
+ # ============================== #
987
+ sprite_features = clip_embd.embed_image(sprite_image_paths)
988
+
989
+ # ============================== #
990
+ # COMPUTE SIMILARITIES #
991
+ # ============================== #
992
+ with open(f"{OUTPUT_FOLDER}/embeddings.json", "r") as f:
993
+ embedding_json = json.load(f)
994
+ # print(f"\n\n EMBEDDING JSON: {embedding_json}")
995
+
996
+ img_matrix = np.array([img["embeddings"] for img in embedding_json])
997
+ sprite_matrix = np.array(sprite_features)
998
+
999
+ # if sprite_matrix.size == 0 or img_matrix.size == 0:
1000
+ # raise RuntimeError("❌ No valid embeddings found for sprites or reference images.")
1001
+ similarity = np.matmul(sprite_matrix, img_matrix.T)
1002
+ # try:
1003
+ # similarity = np.matmul(sprite_matrix, img_matrix.T)
1004
+ # except ValueError as ve:
1005
+ # if "matmul" in str(ve) and "size" in str(ve):
1006
+ # logger.error("❌ Matrix multiplication failed due to shape mismatch. Likely due to empty or invalid embeddings.")
1007
+ # raise RuntimeError("Matrix shape mismatch: CLIP embedding input is invalid or empty.")
1008
+ # else:
1009
+ # raise
1010
+ most_similar_indices = np.argmax(similarity, axis=1)
1011
+ print(f"")
1012
+ # ============= Match and copy ===============
1013
+ project_data = []
1014
+ copied_folders = set()
1015
+
1016
+ # =============================================================== #
1017
+ # Loop through most similar images from Sprites folder #
1018
+ # → Copy sprite assets (excluding matched image + sprite.json) #
1019
+ # → Load sprite.json and append its data to project_data #
1020
+ # =============================================================== #
1021
+ for sprite_idx, matched_idx in enumerate(most_similar_indices):
1022
+ matched_image_path = folder_image_paths[matched_idx]
1023
+ matched_image_path = os.path.normpath(matched_image_path)
1024
+
1025
+ matched_folder = os.path.dirname(matched_image_path)
1026
+ folder_name = os.path.basename(matched_folder)
1027
+
1028
+ if matched_folder in copied_folders:
1029
+ continue
1030
+ copied_folders.add(matched_folder)
1031
+ logger.info(f"Matched image path: {matched_image_path}")
1032
+
1033
+ sprite_json_path = os.path.join(matched_folder, 'sprite.json')
1034
+ if not os.path.exists(sprite_json_path):
1035
+ logger.warning(f"sprite.json not found in: {matched_folder}")
1036
+ continue
1037
+
1038
+ with open(sprite_json_path, 'r') as f:
1039
+ sprite_data = json.load(f)
1040
+ # print(f"SPRITE DATA: \n{sprite_data}")
1041
+ # Copy only non-matched files
1042
+ for fname in os.listdir(matched_folder):
1043
+ fpath = os.path.join(matched_folder, fname)
1044
+ if os.path.isfile(fpath) and fname not in {os.path.basename(matched_image_path), 'sprite.json'}:
1045
+ shutil.copy2(fpath, os.path.join(project_folder, fname))
1046
+ # logger.info(f"Copied Sprite asset: {fname}")
1047
+ project_data.append(sprite_data)
1048
+
1049
+ # ================================================================== #
1050
+ # Loop through most similar images from Backdrops folder #
1051
+ # → Copy Backdrop assets (excluding matched image + project.json) #
1052
+ # → Load project.json and append its data to project_data #
1053
+ # ================================================================== #
1054
+ backdrop_data = [] # for backdrop-related entries
1055
+
1056
+ for backdrop_idx, matched_idx in enumerate(most_similar_indices):
1057
+ matched_image_path = os.path.normpath(folder_image_paths[matched_idx])
1058
+
1059
+ # Check if the match is from the Backdrops folder
1060
+ if matched_image_path.startswith(os.path.normpath(backdrop_images_path)):
1061
+ matched_folder = os.path.dirname(matched_image_path)
1062
+ folder_name = os.path.basename(matched_folder)
1063
+
1064
+ logger.info(f"Backdrop matched image: {matched_image_path}")
1065
+
1066
+ # Copy only non-matched files
1067
+ for fname in os.listdir(matched_folder):
1068
+ fpath = os.path.join(matched_folder, fname)
1069
+ if os.path.isfile(fpath) and fname not in {os.path.basename(matched_image_path), 'project.json'}:
1070
+ shutil.copy2(fpath, os.path.join(project_folder, fname))
1071
+ # logger.info(f"Copied Backdrop asset: {fname}")
1072
+
1073
+ # Append backdrop's project.json
1074
+ backdrop_json_path = os.path.join(matched_folder, 'project.json')
1075
+ if os.path.exists(backdrop_json_path):
1076
+ with open(backdrop_json_path, 'r') as f:
1077
+ backdrop_json_data = json.load(f)
1078
+ # print(f"SPRITE DATA: \n{backdrop_json_data}")
1079
+ if "targets" in backdrop_json_data:
1080
+ for target in backdrop_json_data["targets"]:
1081
+ if target.get("isStage") == True:
1082
+ backdrop_data.append(target)
1083
+ else:
1084
+ logger.warning(f"project.json not found in: {matched_folder}")
1085
+
1086
+ '''
1087
+ project_data, backdrop_data = [], []
1088
+ copied_folders = set()
1089
+ for sprite_idx, matched_idx in enumerate(most_similar_indices):
1090
+ matched_entry = folder_image_paths[matched_idx]
1091
+ # matched_image_path = os.path.normpath(folder_image_paths[matched_idx])
1092
+ matched_image_path = os.path.normpath(matched_entry["file-path"])
1093
+ matched_folder = os.path.dirname(matched_image_path)
1094
+ if matched_folder in copied_folders:
1095
+ continue
1096
+ copied_folders.add(matched_folder)
1097
+
1098
+ # Sprite
1099
+ sprite_json_path = os.path.join(matched_folder, 'sprite.json')
1100
+ if os.path.exists(sprite_json_path):
1101
+ with open(sprite_json_path, 'r') as f:
1102
+ sprite_data = json.load(f)
1103
+ project_data.append(sprite_data)
1104
+
1105
+ for fname in os.listdir(matched_folder):
1106
+ if fname not in {os.path.basename(matched_image_path), 'sprite.json'}:
1107
+ shutil.copy2(os.path.join(
1108
+ matched_folder, fname), project_folder)
1109
+
1110
+ # Backdrop
1111
+ if matched_image_path.startswith(os.path.normpath(backdrop_images_path)):
1112
+ backdrop_json_path = os.path.join(matched_folder, 'project.json')
1113
+ if os.path.exists(backdrop_json_path):
1114
+ with open(backdrop_json_path, 'r') as f:
1115
+ backdrop_json_data = json.load(f)
1116
+ for target in backdrop_json_data.get("targets", []):
1117
+ if target.get("isStage"):
1118
+ backdrop_data.append(target)
1119
+ for fname in os.listdir(matched_folder):
1120
+ if fname not in {os.path.basename(matched_image_path), 'project.json'}:
1121
+ shutil.copy2(os.path.join(
1122
+ matched_folder, fname), project_folder)'''
1123
+
1124
+ # Merge JSON structure
1125
+ final_project = {
1126
+ "targets": [],
1127
+ "monitors": [],
1128
+ "extensions": [],
1129
+ "meta": {
1130
+ "semver": "3.0.0",
1131
+ "vm": "11.3.0",
1132
+ "agent": "OpenAI ScratchVision Agent"
1133
+ }
1134
+ }
1135
+
1136
+ for sprite in project_data:
1137
+ if not sprite.get("isStage", False):
1138
+ final_project["targets"].append(sprite)
1139
+
1140
+ if backdrop_data:
1141
+ all_costumes, sounds = [], []
1142
+ for idx, bd in enumerate(backdrop_data):
1143
+ all_costumes.extend(bd.get("costumes", []))
1144
+ if idx == 0 and "sounds" in bd:
1145
+ sounds = bd["sounds"]
1146
+ final_project["targets"].append({
1147
+ "isStage": True,
1148
+ "name": "Stage",
1149
+ "variables": {},
1150
+ "lists": {},
1151
+ "broadcasts": {},
1152
+ "blocks": {},
1153
+ "comments": {},
1154
+ "currentCostume": 1 if len(all_costumes) > 1 else 0,
1155
+ "costumes": all_costumes,
1156
+ "sounds": sounds,
1157
+ "volume": 100,
1158
+ "layerOrder": 0,
1159
+ "tempo": 60,
1160
+ "videoTransparency": 50,
1161
+ "videoState": "on",
1162
+ "textToSpeechLanguage": None
1163
+ })
1164
+
1165
+ with open(project_json_path, 'w') as f:
1166
+ json.dump(final_project, f, indent=2)
1167
+
1168
+ # logger.info(f"🎉 Final project saved: {project_json_path}")
1169
+ return project_json_path
1170
+
1171
+ # --- ASYNC PDF to Image Conversion ---
1172
+ async def convert_pdf_to_images_async(pdf_path, dpi=300):
1173
+ pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
1174
+ output_image_folder = os.path.join(IMAGE_FOLDER_PATH, pdf_name)
1175
+ loop = asyncio.get_event_loop()
1176
+ with ThreadPoolExecutor() as pool:
1177
+ # Pass poppler_path explicitly
1178
+ result = await loop.run_in_executor(
1179
+ pool, convert_pdf_to_images_sync, pdf_path, output_image_folder, dpi, poppler_path
1180
+ )
1181
+ return result
1182
+
1183
+ # Blocking version used internally
1184
+ def convert_pdf_to_images_sync(pdf_path, output_image_folder, dpi, poppler_path):
1185
+ pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
1186
+ output_image_folder = os.path.join("outputs", "SCANNED_IMAGE", pdf_name)
1187
+ os.makedirs(output_image_folder, exist_ok=True)
1188
+
1189
+ print(f"[INFO] Converting PDF: {pdf_path}")
1190
+ print(f"[INFO] Output folder: {output_image_folder}")
1191
+ print(f"[INFO] Using Poppler path: {poppler_path}")
1192
+ try:
1193
+ images = convert_from_path(pdf_path, dpi=dpi, poppler_path=poppler_path)
1194
+ image_paths = []
1195
+ for i, img in enumerate(images):
1196
+ output_path = os.path.join(output_image_folder, f"page_{i+1}.png")
1197
+ img.save(output_path, "PNG")
1198
+ print(f"[DEBUG] Saved: {output_path}")
1199
+ image_paths.append(output_path)
1200
+ return image_paths
1201
+ except PDFInfoNotInstalledError as e:
1202
+ raise RuntimeError(f"Poppler not installed or path incorrect: {str(e)}")
1203
+ except Exception as e:
1204
+ print(f"[ERROR] Failed to convert PDF: {e}")
1205
+ raise
1206
+
1207
+ def delay_for_tpm_node(state: GameState):
1208
+ logger.info("--- Running DelayForTPMNode ---")
1209
+ time.sleep(10) # Adjust the delay as needed
1210
+ logger.info("Delay completed.")
1211
+ return state
1212
+
1213
+ # Build the LangGraph workflow
1214
+ workflow = StateGraph(GameState)
1215
+
1216
+ # Add all nodes to the workflow
1217
+ workflow.add_node("time_delay_1", delay_for_tpm_node)
1218
+ workflow.add_node("opcode_counter", plan_logic_aligner_node)
1219
+ workflow.set_entry_point("time_delay_1")
1220
+ workflow.add_edge("time_delay_1","opcode_counter")
1221
+ workflow.add_edge("opcode_counter", END)
1222
+ app_graph = workflow.compile()
1223
+
1224
+ def get_desc_pseudo(image_path: str, project_folder: str) -> dict:
1225
+ """
1226
+ Takes a path to a code-block image and returns a dict with:
1227
+ - 'pseudo_code': pseudo-code representing logic in Scratch block format
1228
+ Stores the output into outputs/pseudo_output.json
1229
+ """
1230
+ try:
1231
+ # Load image and encode to base64
1232
+ with open(image_path, "rb") as image_file:
1233
+ image_bytes = image_file.read()
1234
+ img_base64 = base64.b64encode(image_bytes).decode("utf-8")
1235
+
1236
+ # === CALL PLAN LOGIC ALIGNER ===
1237
+ logic_refined = plan_logic_aligner_node(state={"image": img_base64})
1238
+
1239
+ # --- Extract fields ---
1240
+ refined = logic_refined.get("refined_logic", {})
1241
+ name_variable = refined.get("name_variable", "Unknown")
1242
+ pseudo_code_raw = refined.get("pseudocode", "No logic extracted")
1243
+
1244
+ # === Save to JSON ===
1245
+ output_json_path = os.path.join(project_folder, "pseudo_output.json")
1246
+ os.makedirs(os.path.dirname(output_json_path), exist_ok=True)
1247
+
1248
+ if os.path.exists(output_json_path):
1249
+ with open(output_json_path, "r") as f:
1250
+ existing = json.load(f)
1251
+ else:
1252
+ existing = {}
1253
+
1254
+ if name_variable not in existing:
1255
+ existing[name_variable] = []
1256
+
1257
+ existing[name_variable].append({
1258
+ "pseudo_code":pseudo_code_raw
1259
+ })
1260
+
1261
+ with open(output_json_path, "w") as f:
1262
+ json.dump(existing, f, indent=2)
1263
+
1264
+ result = {
1265
+ "name_variable": name_variable,
1266
+ "pseudo_code": pseudo_code_raw
1267
+ }
1268
+ logger.info(f"✅ Saved pseudo-code to: {output_json_path}")
1269
+ initial_state_dict = {
1270
+ # "project_json": project_skeleton,
1271
+ # "description": desc,
1272
+ # "project_id": project_id,
1273
+ "image": img_base64,
1274
+ "pseudo_node":{}
1275
+ }
1276
+
1277
+ state = app_graph.invoke(initial_state_dict)
1278
+ final_project_json = state['pseudo_node']
1279
+ return result
1280
+ except Exception as e:
1281
+ logger.error(f"❌ get_desc_pseudo failed for {image_path}: {e}")
1282
+ return {
1283
+ "image_path": image_path,
1284
+ "error": str(e)
1285
+ }
1286
+
1287
+ # ============== Helper function to Upscale an Image ============== #
1288
+ def upscale_image(image: Image.Image, scale: int = 2) -> Image.Image:
1289
+ """
1290
+ Upscales a PIL image by a given scale factor.
1291
+ """
1292
+ try:
1293
+ width, height = image.size
1294
+ new_size = (width * scale, height * scale)
1295
+ upscaled_image = image.resize(new_size, Image.LANCZOS)
1296
+ logger.info(f"✅ Upscaled image to {new_size}")
1297
+ return upscaled_image
1298
+ except Exception as e:
1299
+ logger.error(f"❌ Error during image upscaling: {str(e)}")
1300
+ return image
1301
+
1302
+ @app.route('/')
1303
+ def index():
1304
+ return render_template('app_index.html')
1305
+
1306
+ # API endpoint
1307
+ @app.route('/process_pdf', methods=['POST'])
1308
+ async def process_pdf():
1309
+ try:
1310
+ logger.info("Received request to process PDF.")
1311
+ if 'pdf_file' not in request.files:
1312
+ logger.warning("No PDF file found in request.")
1313
+ return jsonify({"error": "Missing PDF file in form-data with key 'pdf_file'"}), 400
1314
+
1315
+ pdf_file = request.files['pdf_file']
1316
+ if pdf_file.filename == '':
1317
+ return jsonify({"error": "Empty filename"}), 400
1318
+
1319
+ # # Create unique project folder
1320
+ # random_id = str(uuid.uuid4()).replace("-", "")
1321
+ # project_folder = os.path.join("outputs", f"project_{random_id}")
1322
+ # os.makedirs(project_folder, exist_ok=True)
1323
+
1324
+ # ================================================= #
1325
+ # Generate Random UUID for project folder name #
1326
+ # ================================================= #
1327
+ random_id = str(uuid.uuid4()).replace('-', '')
1328
+ project_folder = os.path.join("outputs", f"project_{random_id}")
1329
+
1330
+ # =========================================================================== #
1331
+ # Create empty json in project_{random_id} folder #
1332
+ # =========================================================================== #
1333
+ os.makedirs(project_folder, exist_ok=True)
1334
+
1335
+ # Save the uploaded PDF temporarily
1336
+ filename = secure_filename(pdf_file.filename)
1337
+ temp_dir = tempfile.mkdtemp()
1338
+ saved_pdf_path = os.path.join(temp_dir, filename)
1339
+ pdf_file.save(saved_pdf_path)
1340
+
1341
+ # logger.info(f"Created project folder: {project_folder}")
1342
+ logger.info(f"Saved uploaded PDF to: {saved_pdf_path}")
1343
+
1344
+ # Extract & process
1345
+ json_path = None
1346
+ output_path, result = extract_images_from_pdf(saved_pdf_path, json_path)
1347
+
1348
+ # Check extracted_sprites.json for "scratch block" in any 'name'
1349
+ extracted_dir = os.path.join(JSON_FOLDER_PATH, os.path.splitext(filename)[0])
1350
+ extracted_sprites_json = os.path.join(extracted_dir, "extracted_sprites.json")
1351
+
1352
+ if not os.path.exists(extracted_sprites_json):
1353
+ return jsonify({"error": "No extracted_sprites.json found"}), 500
1354
+
1355
+ with open(extracted_sprites_json, 'r') as f:
1356
+ sprite_data = json.load(f)
1357
+
1358
+ # for kw in scratch_keywords:
1359
+ # if not any(kw in sprite.get("name", "").lower() for sprite in sprite_data.values()):
1360
+ # return jsonify({"message": "Invalid Content"}), 400
1361
+
1362
+ # add this logic in "extract_images_from_pdf() after manipulated_json"
1363
+ # for kw in scratch_keywords:
1364
+ # if not any(kw in sprite.get("name", "").lower() for sprite in sprite_data.values()):
1365
+ # logging.warning("⚠️ No Code-blocks found, re-scan an image.")
1366
+ # return jsonify({"message": "No-Code blocks found, Re-scan an Image"}), 400
1367
+
1368
+ # if not result or len(result) == 0:
1369
+ # return jsonify({"error": "Invalid Content"}), 400
1370
+
1371
+ # def has_valid_scratch_block(sprites_dict):
1372
+ # for s in sprites_dict.values():
1373
+ # name = s.get("name", "").lower()
1374
+ # if "scratch blocks"
1375
+ project_output = similarity_matching(output_path, project_folder)
1376
+ logger.info("Received request to process PDF.")
1377
+
1378
+ # Call the async function from sync code
1379
+ try:
1380
+ image_paths = await convert_pdf_to_images_async(saved_pdf_path)
1381
+ print("PDF converted to images:", image_paths)
1382
+
1383
+ pseudo_results = [get_desc_pseudo(img_path, project_folder) for img_path in image_paths]
1384
+ except Exception as e:
1385
+ print(f"Error processing PDF: {e}")
1386
+
1387
+ return jsonify({
1388
+ "message": "✅ PDF processed successfully",
1389
+ "output_json": output_path,
1390
+ "sprites": result,
1391
+ "project_output_json": project_output,
1392
+ "scanned_images": image_paths,
1393
+ # "scanned_image_pseudo": pseudo_results
1394
+ })
1395
+ except Exception as e:
1396
+ logger.exception("❌ Failed to process PDF")
1397
+ return jsonify({"error": f"❌ Failed to process PDF: {str(e)}"}), 500
1398
+
1399
+ if __name__ == '__main__':
1400
+ app.run(host='0.0.0.0', port=7860, debug=True)
app_main.py CHANGED
@@ -1,500 +1,623 @@
1
- from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify
2
- import cv2
3
- import numpy as np
4
- from unstructured.partition.pdf import partition_pdf
5
- import json
6
- import base64
7
- import io
8
- import os
9
- from PIL import Image, ImageEnhance, ImageDraw
10
- from imutils.perspective import four_point_transform
11
- from dotenv import load_dotenv
12
- import pytesseract
13
- from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
14
- from langchain_community.document_loaders.image_captions import ImageCaptionLoader
15
- from werkzeug.utils import secure_filename
16
- import tempfile
17
- import torch
18
- from langchain_groq import ChatGroq
19
- from langgraph.prebuilt import create_react_agent
20
- import logging
21
-
22
- # Configure logging
23
- logging.basicConfig(
24
- level=logging.DEBUG, # Use INFO or ERROR in production
25
- format="%(asctime)s [%(levelname)s] %(message)s",
26
- handlers=[
27
- logging.FileHandler("app.log"),
28
- logging.StreamHandler()
29
- ]
30
- )
31
-
32
- logger = logging.getLogger(__name__)
33
-
34
- load_dotenv()
35
- # os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
36
- groq_api_key = os.getenv("GROQ_API_KEY")
37
-
38
- llm = ChatGroq(
39
- model="meta-llama/llama-4-maverick-17b-128e-instruct",
40
- temperature=0,
41
- max_tokens=None,
42
- )
43
-
44
- app = Flask(__name__)
45
-
46
- pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
47
- poppler_path = r"C:\poppler-23.11.0\Library\bin"
48
-
49
- count = 0
50
- PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"
51
-
52
- OUTPUT_FOLDER = "OUTPUTS"
53
- DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "DETECTED_IMAGE")
54
- IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
55
- JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
56
-
57
- for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
58
- os.makedirs(path, exist_ok=True)
59
-
60
- # Model Initialization
61
- try:
62
- smolvlm256m_processor = AutoProcessor.from_pretrained(
63
- "HuggingFaceTB/SmolVLM-256M-Instruct")
64
- # smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
65
- smolvlm256m_model = AutoModelForVision2Seq.from_pretrained(
66
- "HuggingFaceTB/SmolVLM-256M-Instruct",
67
- torch_dtype=torch.bfloat16 if hasattr(
68
- torch, "bfloat16") else torch.float32,
69
- _attn_implementation="eager"
70
- ).to("cpu")
71
- except Exception as e:
72
- raise RuntimeError(f" Failed to load SmolVLM model: {str(e)}")
73
-
74
- # SmolVLM Image Captioning functioning
75
-
76
-
77
- def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
78
- try:
79
- # Ensure exactly one <image> token
80
- if "<image>" not in prompt:
81
- prompt = f"<image> {prompt.strip()}"
82
-
83
- num_image_tokens = prompt.count("<image>")
84
- if num_image_tokens != 1:
85
- raise ValueError(
86
- f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
87
-
88
- inputs = smolvlm256m_processor(
89
- images=[image], text=[prompt], return_tensors="pt").to("cpu")
90
- output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
91
- return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
92
- except Exception as e:
93
- return f"❌ Error during caption generation: {str(e)}"
94
-
95
- # --- FUNCTION: Extract images from saved PDF ---
96
-
97
-
98
- def extract_images_from_pdf(pdf_path, output_json_path):
99
- ''' Extract images from PDF and generate structured sprite JSON '''
100
-
101
- try:
102
- pdf_filename = os.path.splitext(os.path.basename(pdf_path))[
103
- 0] # e.g., "scratch_crab"
104
- pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
105
-
106
- # Create subfolders
107
- extracted_image_subdir = os.path.join(
108
- DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
109
- json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
110
- os.makedirs(extracted_image_subdir, exist_ok=True)
111
- os.makedirs(json_subdir, exist_ok=True)
112
-
113
- # Output paths
114
- output_json_path = os.path.join(json_subdir, "extracted.json")
115
- final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
116
-
117
- try:
118
- elements = partition_pdf(
119
- filename=pdf_path,
120
- strategy="hi_res",
121
- extract_image_block_types=["Image"],
122
- extract_image_block_to_payload=True, # Set to True to get base64 in output
123
- )
124
- except Exception as e:
125
- raise RuntimeError(
126
- f"❌ Failed to extract images from PDF: {str(e)}")
127
-
128
- try:
129
- with open(output_json_path, "w") as f:
130
- json.dump([element.to_dict()
131
- for element in elements], f, indent=4)
132
- except Exception as e:
133
- raise RuntimeError(f"❌ Failed to write extracted.json: {str(e)}")
134
-
135
- try:
136
- # Display extracted images
137
- with open(output_json_path, 'r') as file:
138
- file_elements = json.load(file)
139
- except Exception as e:
140
- raise RuntimeError(f"❌ Failed to read extracted.json: {str(e)}")
141
-
142
- # Prepare manipulated sprite JSON structure
143
- manipulated_json = {}
144
-
145
- # SET A SYSTEM PROMPT
146
- system_prompt = """
147
- You are an expert in visual scene understanding.
148
- Your Job is to analyze an image and respond acoording if asked for name give simple name by analyzing it and if ask for descrption generate a short description covering its elements.
149
-
150
- Guidelines:
151
- - Focus only the images given in Square Shape.
152
- - Don't Consider Blank areas in Image as.
153
- - Don't include generic summary or explanation outside the fields.
154
- Return only string.
155
- """
156
-
157
- agent = create_react_agent(
158
- model=llm,
159
- tools=[],
160
- prompt=system_prompt
161
- )
162
-
163
- # If JSON already exists, load it and find the next available Sprite number
164
- if os.path.exists(final_json_path):
165
- with open(final_json_path, "r") as existing_file:
166
- manipulated = json.load(existing_file)
167
- # Determine the next available index (e.g., Sprite 4 if 1–3 already exist)
168
- existing_keys = [int(k.replace("Sprite ", ""))
169
- for k in manipulated.keys()]
170
- start_count = max(existing_keys, default=0) + 1
171
- else:
172
- start_count = 1
173
-
174
- sprite_count = start_count
175
- for i, element in enumerate(file_elements):
176
- if "image_base64" in element["metadata"]:
177
- try:
178
- image_data = base64.b64decode(
179
- element["metadata"]["image_base64"])
180
- image = Image.open(io.BytesIO(image_data)).convert("RGB")
181
- image.show(title=f"Extracted Image {i+1}")
182
- image_path = os.path.join(
183
- extracted_image_subdir, f"Sprite_{i+1}.png")
184
- image.save(image_path)
185
- with open(image_path, "rb") as image_file:
186
- image_bytes = image_file.read()
187
- img_base64 = base64.b64encode(image_bytes).decode("utf-8")
188
- # description = get_smolvlm_caption(image, prompt="Give a brief Description")
189
- # name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
190
-
191
- def clean_caption_output(raw_output: str, prompt: str) -> str:
192
- answer = raw_output.replace(prompt, '').replace(
193
- "<image>", '').strip(" :-\n")
194
- return answer
195
-
196
- prompt_description = "Give a brief Captioning."
197
- prompt_name = "give a short name caption of this Image."
198
-
199
- content1 = [
200
- {
201
- "type": "text",
202
- "text": f"{prompt_description}"
203
- },
204
- {
205
- "type": "image_url",
206
- "image_url": {
207
- "url": f"data:image/jpeg;base64,{img_base64}"
208
- }
209
- }
210
- ]
211
- response1 = agent.invoke(
212
- {"messages": [{"role": "user", "content": content1}]})
213
- print(response1)
214
- description = response1["messages"][-1].content
215
-
216
- content2 = [
217
- {
218
- "type": "text",
219
- "text": f"{prompt_name}"
220
- },
221
- {
222
- "type": "image_url",
223
- "image_url": {
224
- "url": f"data:image/jpeg;base64,{img_base64}"
225
- }
226
- }
227
- ]
228
-
229
- response2 = agent.invoke(
230
- {"messages": [{"role": "user", "content": content2}]})
231
- print(response2)
232
- name = response2["messages"][-1].content
233
-
234
- # raw_description = get_smolvlm_caption(image, prompt=prompt_description)
235
- # raw_name = get_smolvlm_caption(image, prompt=prompt_name)
236
-
237
- # description = clean_caption_output(raw_description, prompt_description)
238
- # name = clean_caption_output(raw_name, prompt_name)
239
-
240
- manipulated_json[f"Sprite {sprite_count}"] = {
241
- "name": name,
242
- "base64": element["metadata"]["image_base64"],
243
- "file-path": pdf_dir_path,
244
- "description": description
245
- }
246
- sprite_count += 1
247
- except Exception as e:
248
- print(f"⚠️ Error processing Sprite {i+1}: {str(e)}")
249
-
250
- # Save manipulated JSON
251
- with open(final_json_path, "w") as sprite_file:
252
- json.dump(manipulated_json, sprite_file, indent=4)
253
-
254
- print(f"✅ Manipulated sprite JSON saved: {final_json_path}")
255
- return final_json_path, manipulated_json
256
-
257
- except Exception as e:
258
- raise RuntimeError(f"❌ Error in extract_images_from_pdf: {str(e)}")
259
-
260
-
261
- def similarity_matching(input_json_path: str) -> str:
262
- import uuid
263
- import shutil
264
- import tempfile
265
- from langchain_experimental.open_clip.open_clip import OpenCLIPEmbeddings
266
- from matplotlib.offsetbox import OffsetImage, AnnotationBbox
267
- from io import BytesIO
268
-
269
- logger.info("🔍 Running similarity matching...")
270
-
271
- # ============================== #
272
- # DEFINE PATHS #
273
- # ============================== #
274
- backdrop_images_path = os.getenv("BACKDROP_FOLDER_PATH", "/app/reference/backdrops")
275
- sprite_images_path = os.getenv("SPRITE_FOLDER_PATH", "/app/reference/sprites")
276
- image_dirs = [backdrop_images_path, sprite_images_path]
277
-
278
- # ================================================= #
279
- # Generate Random UUID for project folder name #
280
- # ================================================= #
281
- random_id = str(uuid.uuid4()).replace('-', '')
282
- project_folder = os.path.join("outputs", f"project_{random_id}")
283
-
284
- # =========================================================================== #
285
- # Create empty json in project_{random_id} folder #
286
- # =========================================================================== #
287
- os.makedirs(project_folder, exist_ok=True)
288
- project_json_path = os.path.join(project_folder, "project.json")
289
-
290
- # ============================== #
291
- # READ SPRITE METADATA #
292
- # ============================== #
293
- with open(input_json_path, 'r') as f:
294
- sprites_data = json.load(f)
295
-
296
- sprite_ids, texts, sprite_base64 = [], [], []
297
- for sid, sprite in sprites_data.items():
298
- sprite_ids.append(sid)
299
- texts.append(
300
- "This is " + sprite.get("description", sprite.get("name", "")))
301
- sprite_base64.append(sprite["base64"])
302
-
303
- # ============================== #
304
- # INITIALIZE CLIP EMBEDDER #
305
- # ============================== #
306
- clip_embd = OpenCLIPEmbeddings()
307
-
308
- # # ========================================= #
309
- # # Walk folders to collect all image paths #
310
- # # ========================================= #
311
- # folder_image_paths = []
312
- # for image_dir in image_dirs:
313
- # for root, _, files in os.walk(image_dir):
314
- # for fname in files:
315
- # if fname.lower().endswith((".png", ".jpg", ".jpeg")):
316
- # folder_image_paths.append(os.path.join(root, fname))
317
-
318
- # # ============================== #
319
- # # EMBED FOLDER IMAGES (REF) #
320
- # # ============================== #
321
- # img_features = clip_embd.embed_image(folder_image_paths)
322
-
323
- # # ============================== #
324
- # # Store image embeddings #
325
- # # ============================== #
326
- # embedding_json = []
327
- # for i, path in enumerate(folder_image_paths):
328
- # embedding_json.append({
329
- # "name":os.path.basename(path),
330
- # "file-path": path,
331
- # "embeddings": list(img_features[i])
332
- # })
333
-
334
- # # Save to embeddings.json
335
- # with open(f"{OUTPUT_FOLDER}/embeddings.json", "w") as f:
336
- # json.dump(embedding_json, f, indent=2)
337
-
338
- # ============================== #
339
- # DECODE SPRITE IMAGES #
340
- # ============================== #
341
- temp_dir = tempfile.mkdtemp()
342
- sprite_image_paths = []
343
- for idx, b64 in enumerate(sprite_base64):
344
- image_data = base64.b64decode(b64.split(",")[-1])
345
- img = Image.open(BytesIO(image_data)).convert("RGB")
346
- temp_path = os.path.join(temp_dir, f"sprite_{idx}.png")
347
- img.save(temp_path)
348
- sprite_image_paths.append(temp_path)
349
-
350
- # ============================== #
351
- # EMBED SPRITE IMAGES #
352
- # ============================== #
353
- sprite_features = clip_embd.embed_image(sprite_image_paths)
354
-
355
- # ============================== #
356
- # COMPUTE SIMILARITIES #
357
- # ============================== #
358
- with open(f"{OUTPUT_FOLDER}/embeddings.json", "r") as f:
359
- embedding_json = json.load(f)
360
-
361
- img_matrix = np.array([img["embeddings"] for img in embedding_json])
362
- sprite_matrix = np.array(sprite_features)
363
-
364
- similarity = np.matmul(sprite_matrix, img_matrix.T)
365
- most_similar_indices = np.argmax(similarity, axis=1)
366
-
367
- # ============= Match and copy ================
368
- project_data, backdrop_data = [], []
369
- copied_folders = set()
370
- for sprite_idx, matched_idx in enumerate(most_similar_indices):
371
- matched_entry = embedding_json[matched_idx]
372
- # matched_image_path = os.path.normpath(folder_image_paths[matched_idx])
373
- matched_image_path = os.path.normpath(matched_entry["file-path"])
374
- matched_folder = os.path.dirname(matched_image_path)
375
- if matched_folder in copied_folders:
376
- continue
377
- copied_folders.add(matched_folder)
378
-
379
- # Sprite
380
- sprite_json_path = os.path.join(matched_folder, 'sprite.json')
381
- if os.path.exists(sprite_json_path):
382
- with open(sprite_json_path, 'r') as f:
383
- sprite_data = json.load(f)
384
- project_data.append(sprite_data)
385
-
386
- for fname in os.listdir(matched_folder):
387
- if fname not in {os.path.basename(matched_image_path), 'sprite.json'}:
388
- shutil.copy2(os.path.join(
389
- matched_folder, fname), project_folder)
390
-
391
- # Backdrop
392
- if matched_image_path.startswith(os.path.normpath(backdrop_images_path)):
393
- backdrop_json_path = os.path.join(matched_folder, 'project.json')
394
- if os.path.exists(backdrop_json_path):
395
- with open(backdrop_json_path, 'r') as f:
396
- backdrop_json_data = json.load(f)
397
- for target in backdrop_json_data.get("targets", []):
398
- if target.get("isStage"):
399
- backdrop_data.append(target)
400
- for fname in os.listdir(matched_folder):
401
- if fname not in {os.path.basename(matched_image_path), 'project.json'}:
402
- shutil.copy2(os.path.join(
403
- matched_folder, fname), project_folder)
404
-
405
- # Merge JSON structure
406
- final_project = {
407
- "targets": [],
408
- "monitors": [],
409
- "extensions": [],
410
- "meta": {
411
- "semver": "3.0.0",
412
- "vm": "11.3.0",
413
- "agent": "OpenAI ScratchVision Agent"
414
- }
415
- }
416
-
417
- for sprite in project_data:
418
- if not sprite.get("isStage", False):
419
- final_project["targets"].append(sprite)
420
-
421
- if backdrop_data:
422
- all_costumes, sounds = [], []
423
- for idx, bd in enumerate(backdrop_data):
424
- all_costumes.extend(bd.get("costumes", []))
425
- if idx == 0 and "sounds" in bd:
426
- sounds = bd["sounds"]
427
- final_project["targets"].append({
428
- "isStage": True,
429
- "name": "Stage",
430
- "variables": {},
431
- "lists": {},
432
- "broadcasts": {},
433
- "blocks": {},
434
- "comments": {},
435
- "currentCostume": 1 if len(all_costumes) > 1 else 0,
436
- "costumes": all_costumes,
437
- "sounds": sounds,
438
- "volume": 100,
439
- "layerOrder": 0,
440
- "tempo": 60,
441
- "videoTransparency": 50,
442
- "videoState": "on",
443
- "textToSpeechLanguage": None
444
- })
445
-
446
- with open(project_json_path, 'w') as f:
447
- json.dump(final_project, f, indent=2)
448
-
449
- logger.info(f"🎉 Final project saved: {project_json_path}")
450
- return project_json_path
451
-
452
-
453
- @app.route('/')
454
- def index():
455
- return render_template('app_index.html')
456
-
457
- # API endpoint
458
-
459
-
460
- @app.route('/process_pdf', methods=['POST'])
461
- def process_pdf():
462
- try:
463
- logger.info("Received request to process PDF.")
464
- if 'pdf_file' not in request.files:
465
- logger.warning("No PDF file found in request.")
466
- return jsonify({"error": "Missing PDF file in form-data with key 'pdf_file'"}), 400
467
-
468
- pdf_file = request.files['pdf_file']
469
- if pdf_file.filename == '':
470
- return jsonify({"error": "Empty filename"}), 400
471
-
472
- # Save the uploaded PDF temporarily
473
- filename = secure_filename(pdf_file.filename)
474
- temp_dir = tempfile.mkdtemp()
475
- saved_pdf_path = os.path.join(temp_dir, filename)
476
- pdf_file.save(saved_pdf_path)
477
-
478
- logger.info(f"Saved uploaded PDF to: {saved_pdf_path}")
479
-
480
- # Extract & process
481
- json_path = None
482
- output_path, result = extract_images_from_pdf(
483
- saved_pdf_path, json_path)
484
-
485
- project_output = similarity_matching(output_path)
486
- logger.info("Received request to process PDF.")
487
-
488
- return jsonify({
489
- "message": "✅ PDF processed successfully",
490
- "output_json": output_path,
491
- "sprites": result,
492
- "project_output_json": project_output
493
- })
494
- except Exception as e:
495
- logger.exception("❌ Failed to process PDF")
496
- return jsonify({"error": f"❌ Failed to process PDF: {str(e)}"}), 500
497
-
498
-
499
- if __name__ == '__main__':
500
- app.run(host='0.0.0.0', port=7860, debug=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify
2
+ import cv2, json,base64,io,os,tempfile,torch,logging
3
+ import numpy as np
4
+ from unstructured.partition.pdf import partition_pdf
5
+ from PIL import Image, ImageEnhance, ImageDraw
6
+ from imutils.perspective import four_point_transform
7
+ from dotenv import load_dotenv
8
+ import pytesseract
9
+ from transformers import AutoProcessor, AutoModelForImageTextToText, AutoModelForVision2Seq
10
+ from langchain_community.document_loaders.image_captions import ImageCaptionLoader
11
+ from werkzeug.utils import secure_filename
12
+ from langchain_groq import ChatGroq
13
+ from langgraph.prebuilt import create_react_agent
14
+
15
+ # Configure logging
16
+ logging.basicConfig(
17
+ level=logging.DEBUG, # Use INFO or ERROR in production
18
+ format="%(asctime)s [%(levelname)s] %(message)s",
19
+ handlers=[
20
+ logging.FileHandler("app.log"),
21
+ logging.StreamHandler()
22
+ ]
23
+ )
24
+
25
+ logger = logging.getLogger(__name__)
26
+
27
+ load_dotenv()
28
+ # os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
29
+ groq_api_key = os.getenv("GROQ_API_KEY")
30
+
31
+ llm = ChatGroq(
32
+ model="meta-llama/llama-4-maverick-17b-128e-instruct",
33
+ temperature=0,
34
+ max_tokens=None,
35
+ )
36
+
37
+ app = Flask(__name__)
38
+
39
+ pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe"
40
+ poppler_path = r"C:\poppler-23.11.0\Library\bin"
41
+
42
+ count = 0
43
+ PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf"
44
+
45
+ OUTPUT_FOLDER = "OUTPUTS"
46
+ DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "DETECTED_IMAGE")
47
+ IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE")
48
+ JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON")
49
+
50
+ for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]:
51
+ os.makedirs(path, exist_ok=True)
52
+
53
+ # Model Initialization
54
+ try:
55
+ smolvlm256m_processor = AutoProcessor.from_pretrained(
56
+ "HuggingFaceTB/SmolVLM-256M-Instruct")
57
+ # smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu")
58
+ smolvlm256m_model = AutoModelForVision2Seq.from_pretrained(
59
+ "HuggingFaceTB/SmolVLM-256M-Instruct",
60
+ torch_dtype=torch.bfloat16 if hasattr(
61
+ torch, "bfloat16") else torch.float32,
62
+ _attn_implementation="eager"
63
+ ).to("cpu")
64
+ except Exception as e:
65
+ raise RuntimeError(f"❌ Failed to load SmolVLM model: {str(e)}")
66
+
67
+ # SmolVLM Image Captioning functioning
68
+ def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str:
69
+ try:
70
+ # Ensure exactly one <image> token
71
+ if "<image>" not in prompt:
72
+ prompt = f"<image> {prompt.strip()}"
73
+
74
+ num_image_tokens = prompt.count("<image>")
75
+ if num_image_tokens != 1:
76
+ raise ValueError(
77
+ f"Prompt must contain exactly 1 <image> token. Found {num_image_tokens}")
78
+
79
+ inputs = smolvlm256m_processor(
80
+ images=[image], text=[prompt], return_tensors="pt").to("cpu")
81
+ output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100)
82
+ return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True)
83
+ except Exception as e:
84
+ return f"❌ Error during caption generation: {str(e)}"
85
+
86
+ # --- FUNCTION: Extract images from saved PDF ---
87
+ def extract_images_from_pdf(pdf_path, final_json_path_2):
88
+ ''' Extract images from PDF and generate structured sprite JSON '''
89
+
90
+ try:
91
+ pdf_filename = os.path.splitext(os.path.basename(pdf_path))[
92
+ 0] # e.g., "scratch_crab"
93
+ pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\")
94
+
95
+ # Create subfolders
96
+ extracted_image_subdir = os.path.join(
97
+ DETECTED_IMAGE_FOLDER_PATH, pdf_filename)
98
+ json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename)
99
+ os.makedirs(extracted_image_subdir, exist_ok=True)
100
+ os.makedirs(json_subdir, exist_ok=True)
101
+
102
+ # Output paths
103
+ output_json_path = os.path.join(json_subdir, "extracted.json")
104
+ final_json_path = os.path.join(json_subdir, "extracted_sprites.json")
105
+ final_json_path_2 = os.path.join(json_subdir, "extracted_sprites_2.json")
106
+
107
+ try:
108
+ elements = partition_pdf(
109
+ filename=pdf_path,
110
+ strategy="hi_res",
111
+ extract_image_block_types=["Image"],
112
+ extract_image_block_to_payload=True, # Set to True to get base64 in output
113
+ )
114
+ except Exception as e:
115
+ raise RuntimeError(
116
+ f"❌ Failed to extract images from PDF: {str(e)}")
117
+
118
+ try:
119
+ with open(output_json_path, "w") as f:
120
+ json.dump([element.to_dict()
121
+ for element in elements], f, indent=4)
122
+ except Exception as e:
123
+ raise RuntimeError(f"❌ Failed to write extracted.json: {str(e)}")
124
+
125
+ try:
126
+ # Display extracted images
127
+ with open(output_json_path, 'r') as file:
128
+ file_elements = json.load(file)
129
+ except Exception as e:
130
+ raise RuntimeError(f"❌ Failed to read extracted.json: {str(e)}")
131
+
132
+ # Prepare manipulated sprite JSON structure
133
+ manipulated_json = {}
134
+
135
+ # SET A SYSTEM PROMPT
136
+ system_prompt = """
137
+ You are an expert in visual scene understanding.
138
+ Your Job is to analyze an image and respond acoording if asked for name give simple name by analyzing it and if ask for descrption generate a short description covering its elements.
139
+
140
+ Guidelines:
141
+ - Focus only the images given in Square Shape.
142
+ - Don't Consider Blank areas in Image as.
143
+ - Don't include generic summary or explanation outside the fields.
144
+ Return only string.
145
+ """
146
+
147
+ agent = create_react_agent(
148
+ model=llm,
149
+ tools=[],
150
+ prompt=system_prompt
151
+ )
152
+
153
+ # If JSON already exists, load it and find the next available Sprite number
154
+ if os.path.exists(final_json_path):
155
+ with open(final_json_path, "r") as existing_file:
156
+ manipulated = json.load(existing_file)
157
+ # Determine the next available index (e.g., Sprite 4 if 1–3 already exist)
158
+ existing_keys = [int(k.replace("Sprite ", ""))
159
+ for k in manipulated.keys()]
160
+ start_count = max(existing_keys, default=0) + 1
161
+ else:
162
+ start_count = 1
163
+
164
+ sprite_count = start_count
165
+ for i, element in enumerate(file_elements):
166
+ if "image_base64" in element["metadata"]:
167
+ try:
168
+ image_data = base64.b64decode(
169
+ element["metadata"]["image_base64"])
170
+ image = Image.open(io.BytesIO(image_data)).convert("RGB")
171
+ # image.show(title=f"Extracted Image {i+1}")
172
+ image_path = os.path.join(
173
+ extracted_image_subdir, f"Sprite_{i+1}.png")
174
+ image.save(image_path)
175
+
176
+ with open(image_path, "rb") as image_file:
177
+ image_bytes = image_file.read()
178
+ img_base64 = base64.b64encode(image_bytes).decode("utf-8")
179
+ # description = get_smolvlm_caption(image, prompt="Give a brief Description")
180
+ # name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.")
181
+
182
+ # def clean_caption_output(raw_output: str, prompt: str) -> str:
183
+ # answer = raw_output.replace(prompt, '').replace(
184
+ # "<image>", '').strip(" :-\n")
185
+ # return answer
186
+
187
+ prompt_description = "Give a brief Captioning. If any Image include the text or any logical block structure give it name as default 'scratch blocks'"
188
+ prompt_name = "give a short name caption of this Image. If any Image include the text or any logical block structure give it description as default 'scratch blocks'"
189
+
190
+ content1 = [
191
+ {
192
+ "type": "text",
193
+ "text": f"{prompt_description}"
194
+ },
195
+ {
196
+ "type": "image_url",
197
+ "image_url": {
198
+ "url": f"data:image/jpeg;base64,{img_base64}"
199
+ }
200
+ }
201
+ ]
202
+ response1 = agent.invoke(
203
+ {"messages": [{"role": "user", "content": content1}]})
204
+ # print(response1)
205
+ description = response1["messages"][-1].content
206
+
207
+ content2 = [
208
+ {
209
+ "type": "text",
210
+ "text": f"{prompt_name}"
211
+ },
212
+ {
213
+ "type": "image_url",
214
+ "image_url": {
215
+ "url": f"data:image/jpeg;base64,{img_base64}"
216
+ }
217
+ }
218
+ ]
219
+
220
+ response2 = agent.invoke(
221
+ {"messages": [{"role": "user", "content": content2}]})
222
+ # print(response2)
223
+ name = response2["messages"][-1].content
224
+
225
+ # def is_valid_sprite_or_backdrop(desc):
226
+ # desc = desc.lower()
227
+ # sprite_keywords = ["character", "cartoon", "sprite", "figure", "animal", "person", "robot", "creature"]
228
+ # backdrop_keywords = ["scene", "background", "forest", "room", "underwater", "sky", "ocean", "mountain", "city", "village"]
229
+ # if any(kw in desc for kw in sprite_keywords + backdrop_keywords):
230
+ # return True
231
+ # return False
232
+
233
+ # if not is_valid_sprite_or_backdrop(description):
234
+ # logger.warning(f"�� Skipped non-sprite/backdrop image {i+1}: {description}")
235
+ # continue
236
+
237
+ # def is_scratch_code_block(desc):
238
+ # desc = desc.lower()
239
+ # scratch_block_keyword = ["Scratch", "Code", "scratch blocks","move", "steps", "degree",
240
+ # "turn","switch","go to","random position", "glide", "direction",
241
+ # "hide variable"]
242
+ # return any(kw in desc for kw in scratch_block_keyword)
243
+
244
+ # if is_scratch_code_block(description):
245
+ # logger.warning(f"⛔ Skipped code block image {i+1}: {description}")
246
+ # logger.info(is_scratch_code_block(description))
247
+ # continue
248
+
249
+ # raw_description = get_smolvlm_caption(image, prompt=prompt_description)
250
+ # raw_name = get_smolvlm_caption(image, prompt=prompt_name)
251
+
252
+ # description = clean_caption_output(raw_description, prompt_description)
253
+ # name = clean_caption_output(raw_name, prompt_name)
254
+
255
+ manipulated_json[f"Sprite {sprite_count}"] = {
256
+ "name": name,
257
+ "base64": element["metadata"]["image_base64"],
258
+ "file-path": pdf_dir_path,
259
+ "description": description
260
+ }
261
+ sprite_count += 1
262
+ except Exception as e:
263
+ print(f"⚠️ Error processing Sprite {i+1}: {str(e)}")
264
+
265
+ scratch_keywords = [
266
+ "move", "turn", "wait", "repeat", "if", "else", "broadcast",
267
+ "glide", "change", "forever", "when", "switch",
268
+ "next costume", "set", "show", "hide", "play sound",
269
+ "go to", "x position", "y position", "think", "say",
270
+ "variable", "stop", "clone",
271
+ "touching", "sensing", "pen", "clear","Scratch","Code","scratch blocks"
272
+ ]
273
+ # # New dictionary to store only valid sprites
274
+ # filtered_sprites = {}
275
+ # for sprite_id, sprite_data in manipulated_json.items():
276
+ # desc = sprite_data.get("description", "").lower()
277
+ # # If no scratch block-like word found, accept this sprite
278
+ # if not any(keyword in desc for keyword in scratch_keywords):
279
+ # filtered_sprites[sprite_id] = sprite_data
280
+ # else:
281
+ # logger.info(f"🧱 Detected Scratch code block in: {sprite_id}, skipping...")
282
+
283
+ # Save manipulated JSON
284
+ with open(final_json_path, "w") as sprite_file:
285
+ json.dump(manipulated_json, sprite_file, indent=4)
286
+
287
+ def is_code_block(name: str) -> bool:
288
+ for kw in scratch_keywords:
289
+ if kw.lower() in name.lower():
290
+ return True
291
+ return False
292
+
293
+ # Filter out code block images
294
+ filtered_sprites = {}
295
+ for key, value in manipulated_json.items():
296
+ sprite_name = value.get("name", "")
297
+ if not is_code_block(sprite_name):
298
+ filtered_sprites[key] = value
299
+ else:
300
+ logger.info(f"🛑 Excluded code block-like image: {key}")
301
+
302
+ # Overwrite with filtered content
303
+ with open(final_json_path_2, "w") as sprite_file:
304
+ json.dump(filtered_sprites, sprite_file, indent=4)
305
+ # print(f"✅ Manipulated sprite JSON saved: {final_json_path}")
306
+ return final_json_path, manipulated_json
307
+ except Exception as e:
308
+ raise RuntimeError(f"❌ Error in extract_images_from_pdf: {str(e)}")
309
+
310
+
311
+ def similarity_matching(input_json_path: str) -> str:
312
+ import uuid
313
+ import shutil
314
+ import tempfile
315
+ from langchain_experimental.open_clip.open_clip import OpenCLIPEmbeddings
316
+ from matplotlib.offsetbox import OffsetImage, AnnotationBbox
317
+ from io import BytesIO
318
+
319
+ logger.info("🔍 Running similarity matching...")
320
+
321
+ # ============================== #
322
+ # DEFINE PATHS #
323
+ # ============================== #
324
+ backdrop_images_path = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\Backdrops"
325
+ sprite_images_path = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\sprites"
326
+ # backdrop_images_path = os.getenv("BACKDROP_FOLDER_PATH", "/app/reference/backdrops")
327
+ # sprite_images_path = os.getenv("SPRITE_FOLDER_PATH", "/app/reference/sprites")
328
+ image_dirs = [backdrop_images_path, sprite_images_path]
329
+
330
+ # ================================================= #
331
+ # Generate Random UUID for project folder name #
332
+ # ================================================= #
333
+ random_id = str(uuid.uuid4()).replace('-', '')
334
+ project_folder = os.path.join("outputs", f"project_{random_id}")
335
+
336
+ # =========================================================================== #
337
+ # Create empty json in project_{random_id} folder #
338
+ # =========================================================================== #
339
+ os.makedirs(project_folder, exist_ok=True)
340
+ project_json_path = os.path.join(project_folder, "project.json")
341
+
342
+ # ============================== #
343
+ # READ SPRITE METADATA #
344
+ # ============================== #
345
+ with open(input_json_path, 'r') as f:
346
+ sprites_data = json.load(f)
347
+
348
+ sprite_ids, texts, sprite_base64 = [], [], []
349
+ for sid, sprite in sprites_data.items():
350
+ sprite_ids.append(sid)
351
+ texts.append(
352
+ "This is " + sprite.get("description", sprite.get("name", "")))
353
+ sprite_base64.append(sprite["base64"])
354
+
355
+ # ============================== #
356
+ # INITIALIZE CLIP EMBEDDER #
357
+ # ============================== #
358
+ clip_embd = OpenCLIPEmbeddings()
359
+
360
+ # ========================================= #
361
+ # Walk folders to collect all image paths #
362
+ # ========================================= #
363
+ folder_image_paths = []
364
+ for image_dir in image_dirs:
365
+ for root, _, files in os.walk(image_dir):
366
+ for fname in files:
367
+ if fname.lower().endswith((".png", ".jpg", ".jpeg")):
368
+ folder_image_paths.append(os.path.join(root, fname))
369
+
370
+ # # ============================== #
371
+ # # EMBED FOLDER IMAGES (REF) #
372
+ # # ============================== #
373
+ # img_features = clip_embd.embed_image(folder_image_paths)
374
+
375
+ # # ============================== #
376
+ # # Store image embeddings #
377
+ # # ============================== #
378
+ # embedding_json = []
379
+ # for i, path in enumerate(folder_image_paths):
380
+ # embedding_json.append({
381
+ # "name":os.path.basename(path),
382
+ # "file-path": path,
383
+ # "embeddings": list(img_features[i])
384
+ # })
385
+
386
+ # # Save to embeddings.json
387
+ # with open(f"{OUTPUT_FOLDER}/embeddings.json", "w") as f:
388
+ # json.dump(embedding_json, f, indent=2)
389
+
390
+ # ============================== #
391
+ # DECODE SPRITE IMAGES #
392
+ # ============================== #
393
+ temp_dir = tempfile.mkdtemp()
394
+ sprite_image_paths = []
395
+ for idx, b64 in enumerate(sprite_base64):
396
+ image_data = base64.b64decode(b64.split(",")[-1])
397
+ img = Image.open(BytesIO(image_data)).convert("RGB")
398
+ temp_path = os.path.join(temp_dir, f"sprite_{idx}.png")
399
+ img.save(temp_path)
400
+ sprite_image_paths.append(temp_path)
401
+
402
+ # ============================== #
403
+ # EMBED SPRITE IMAGES #
404
+ # ============================== #
405
+ sprite_features = clip_embd.embed_image(sprite_image_paths)
406
+
407
+ # ============================== #
408
+ # COMPUTE SIMILARITIES #
409
+ # ============================== #
410
+ with open(f"{OUTPUT_FOLDER}/embeddings.json", "r") as f:
411
+ embedding_json = json.load(f)
412
+ # print(f"\n\n EMBEDDING JSON: {embedding_json}")
413
+
414
+ img_matrix = np.array([img["embeddings"] for img in embedding_json])
415
+ sprite_matrix = np.array(sprite_features)
416
+
417
+ similarity = np.matmul(sprite_matrix, img_matrix.T)
418
+ most_similar_indices = np.argmax(similarity, axis=1)
419
+
420
+ # ============= Match and copy ===============
421
+ project_data = []
422
+ copied_folders = set()
423
+
424
+ # =============================================================== #
425
+ # Loop through most similar images from Sprites folder #
426
+ # → Copy sprite assets (excluding matched image + sprite.json) #
427
+ # → Load sprite.json and append its data to project_data #
428
+ # =============================================================== #
429
+ for sprite_idx, matched_idx in enumerate(most_similar_indices):
430
+ matched_image_path = folder_image_paths[matched_idx]
431
+ matched_image_path = os.path.normpath(matched_image_path)
432
+
433
+ matched_folder = os.path.dirname(matched_image_path)
434
+ folder_name = os.path.basename(matched_folder)
435
+
436
+ if matched_folder in copied_folders:
437
+ continue
438
+ copied_folders.add(matched_folder)
439
+ logger.info(f"Matched image path: {matched_image_path}")
440
+
441
+ sprite_json_path = os.path.join(matched_folder, 'sprite.json')
442
+ if not os.path.exists(sprite_json_path):
443
+ logger.warning(f"sprite.json not found in: {matched_folder}")
444
+ continue
445
+
446
+ with open(sprite_json_path, 'r') as f:
447
+ sprite_data = json.load(f)
448
+ # print(f"SPRITE DATA: \n{sprite_data}")
449
+ # Copy only non-matched files
450
+ for fname in os.listdir(matched_folder):
451
+ fpath = os.path.join(matched_folder, fname)
452
+ if os.path.isfile(fpath) and fname not in {os.path.basename(matched_image_path), 'sprite.json'}:
453
+ shutil.copy2(fpath, os.path.join(project_folder, fname))
454
+ # logger.info(f"Copied Sprite asset: {fname}")
455
+ project_data.append(sprite_data)
456
+
457
+ # ================================================================== #
458
+ # Loop through most similar images from Backdrops folder #
459
+ # → Copy Backdrop assets (excluding matched image + project.json) #
460
+ # → Load project.json and append its data to project_data #
461
+ # ================================================================== #
462
+ backdrop_data = [] # for backdrop-related entries
463
+
464
+ for backdrop_idx, matched_idx in enumerate(most_similar_indices):
465
+ matched_image_path = os.path.normpath(folder_image_paths[matched_idx])
466
+
467
+ # Check if the match is from the Backdrops folder
468
+ if matched_image_path.startswith(os.path.normpath(backdrop_images_path)):
469
+ matched_folder = os.path.dirname(matched_image_path)
470
+ folder_name = os.path.basename(matched_folder)
471
+
472
+ logger.info(f"Backdrop matched image: {matched_image_path}")
473
+
474
+ # Copy only non-matched files
475
+ for fname in os.listdir(matched_folder):
476
+ fpath = os.path.join(matched_folder, fname)
477
+ if os.path.isfile(fpath) and fname not in {os.path.basename(matched_image_path), 'project.json'}:
478
+ shutil.copy2(fpath, os.path.join(project_folder, fname))
479
+ # logger.info(f"Copied Backdrop asset: {fname}")
480
+
481
+ # Append backdrop's project.json
482
+ backdrop_json_path = os.path.join(matched_folder, 'project.json')
483
+ if os.path.exists(backdrop_json_path):
484
+ with open(backdrop_json_path, 'r') as f:
485
+ backdrop_json_data = json.load(f)
486
+ # print(f"SPRITE DATA: \n{backdrop_json_data}")
487
+ if "targets" in backdrop_json_data:
488
+ for target in backdrop_json_data["targets"]:
489
+ if target.get("isStage") == True:
490
+ backdrop_data.append(target)
491
+ else:
492
+ logger.warning(f"project.json not found in: {matched_folder}")
493
+
494
+ '''
495
+ project_data, backdrop_data = [], []
496
+ copied_folders = set()
497
+ for sprite_idx, matched_idx in enumerate(most_similar_indices):
498
+ matched_entry = folder_image_paths[matched_idx]
499
+ # matched_image_path = os.path.normpath(folder_image_paths[matched_idx])
500
+ matched_image_path = os.path.normpath(matched_entry["file-path"])
501
+ matched_folder = os.path.dirname(matched_image_path)
502
+ if matched_folder in copied_folders:
503
+ continue
504
+ copied_folders.add(matched_folder)
505
+
506
+ # Sprite
507
+ sprite_json_path = os.path.join(matched_folder, 'sprite.json')
508
+ if os.path.exists(sprite_json_path):
509
+ with open(sprite_json_path, 'r') as f:
510
+ sprite_data = json.load(f)
511
+ project_data.append(sprite_data)
512
+
513
+ for fname in os.listdir(matched_folder):
514
+ if fname not in {os.path.basename(matched_image_path), 'sprite.json'}:
515
+ shutil.copy2(os.path.join(
516
+ matched_folder, fname), project_folder)
517
+
518
+ # Backdrop
519
+ if matched_image_path.startswith(os.path.normpath(backdrop_images_path)):
520
+ backdrop_json_path = os.path.join(matched_folder, 'project.json')
521
+ if os.path.exists(backdrop_json_path):
522
+ with open(backdrop_json_path, 'r') as f:
523
+ backdrop_json_data = json.load(f)
524
+ for target in backdrop_json_data.get("targets", []):
525
+ if target.get("isStage"):
526
+ backdrop_data.append(target)
527
+ for fname in os.listdir(matched_folder):
528
+ if fname not in {os.path.basename(matched_image_path), 'project.json'}:
529
+ shutil.copy2(os.path.join(
530
+ matched_folder, fname), project_folder)'''
531
+
532
+ # Merge JSON structure
533
+ final_project = {
534
+ "targets": [],
535
+ "monitors": [],
536
+ "extensions": [],
537
+ "meta": {
538
+ "semver": "3.0.0",
539
+ "vm": "11.3.0",
540
+ "agent": "OpenAI ScratchVision Agent"
541
+ }
542
+ }
543
+
544
+ for sprite in project_data:
545
+ if not sprite.get("isStage", False):
546
+ final_project["targets"].append(sprite)
547
+
548
+ if backdrop_data:
549
+ all_costumes, sounds = [], []
550
+ for idx, bd in enumerate(backdrop_data):
551
+ all_costumes.extend(bd.get("costumes", []))
552
+ if idx == 0 and "sounds" in bd:
553
+ sounds = bd["sounds"]
554
+ final_project["targets"].append({
555
+ "isStage": True,
556
+ "name": "Stage",
557
+ "variables": {},
558
+ "lists": {},
559
+ "broadcasts": {},
560
+ "blocks": {},
561
+ "comments": {},
562
+ "currentCostume": 1 if len(all_costumes) > 1 else 0,
563
+ "costumes": all_costumes,
564
+ "sounds": sounds,
565
+ "volume": 100,
566
+ "layerOrder": 0,
567
+ "tempo": 60,
568
+ "videoTransparency": 50,
569
+ "videoState": "on",
570
+ "textToSpeechLanguage": None
571
+ })
572
+
573
+ with open(project_json_path, 'w') as f:
574
+ json.dump(final_project, f, indent=2)
575
+
576
+ # logger.info(f"🎉 Final project saved: {project_json_path}")
577
+ return project_json_path
578
+
579
+ @app.route('/')
580
+ def index():
581
+ return render_template('app_index.html')
582
+
583
+ # API endpoint
584
+ @app.route('/process_pdf', methods=['POST'])
585
+ def process_pdf():
586
+ try:
587
+ logger.info("Received request to process PDF.")
588
+ if 'pdf_file' not in request.files:
589
+ logger.warning("No PDF file found in request.")
590
+ return jsonify({"error": "Missing PDF file in form-data with key 'pdf_file'"}), 400
591
+
592
+ pdf_file = request.files['pdf_file']
593
+ if pdf_file.filename == '':
594
+ return jsonify({"error": "Empty filename"}), 400
595
+
596
+ # Save the uploaded PDF temporarily
597
+ filename = secure_filename(pdf_file.filename)
598
+ temp_dir = tempfile.mkdtemp()
599
+ saved_pdf_path = os.path.join(temp_dir, filename)
600
+ pdf_file.save(saved_pdf_path)
601
+
602
+ logger.info(f"Saved uploaded PDF to: {saved_pdf_path}")
603
+
604
+ # Extract & process
605
+ json_path = None
606
+ output_path, result = extract_images_from_pdf(
607
+ saved_pdf_path, json_path)
608
+
609
+ project_output = similarity_matching(output_path)
610
+ logger.info("Received request to process PDF.")
611
+
612
+ return jsonify({
613
+ "message": "✅ PDF processed successfully",
614
+ "output_json": output_path,
615
+ "sprites": result,
616
+ "project_output_json": project_output
617
+ })
618
+ except Exception as e:
619
+ logger.exception("❌ Failed to process PDF")
620
+ return jsonify({"error": f"❌ Failed to process PDF: {str(e)}"}), 500
621
+
622
+ if __name__ == '__main__':
623
+ app.run(host='0.0.0.0', port=7860, debug=True)
assets_manipulate.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import zipfile
3
+ import cairosvg
4
+ import json
5
+
6
+ def add_zip_suffix_to_all(folder_path):
7
+ """
8
+ Adds '.zip' suffix to all files in the given folder (except already zipped).
9
+ """
10
+ for filename in os.listdir(folder_path):
11
+ file_path = os.path.join(folder_path, filename)
12
+
13
+ if os.path.isfile(file_path) and not filename.endswith(".zip"):
14
+ new_filename = filename + ".zip"
15
+ new_file_path = os.path.join(folder_path, new_filename)
16
+
17
+ os.rename(file_path, new_file_path)
18
+ print(f"Renamed: {filename} -> {new_filename}")
19
+
20
+ def extract_all_zip_files(folder_path):
21
+ """
22
+ Extracts all '.zip' files in the given folder into a subfolder
23
+ with the same name (without .zip).
24
+ Skips if already extracted.
25
+ Returns a list of extracted folders.
26
+ """
27
+ extracted_dirs = []
28
+ for filename in os.listdir(folder_path):
29
+ if filename.endswith(".zip"):
30
+ file_path = os.path.join(folder_path, filename)
31
+ extract_dir = os.path.join(folder_path, filename[:-4]) # remove .zip
32
+
33
+ # Skip if already extracted
34
+ if os.path.exists(extract_dir) and os.listdir(extract_dir):
35
+ print(f"Skipping: {filename} (already extracted at {extract_dir}/)")
36
+ extracted_dirs.append(extract_dir)
37
+ continue
38
+
39
+ os.makedirs(extract_dir, exist_ok=True)
40
+
41
+ with zipfile.ZipFile(file_path, 'r') as zip_ref:
42
+ zip_ref.extractall(extract_dir)
43
+
44
+ print(f"Extracted: {filename} -> {extract_dir}/")
45
+ extracted_dirs.append(extract_dir)
46
+
47
+ return extracted_dirs
48
+
49
+ def convert_svgs_to_pngs(folder_path, delete_original=False):
50
+ """
51
+ Converts all .svg files in a folder (and its subfolders) to .png.
52
+ Skips if the .png already exists.
53
+ If delete_original=True, removes the .svg after conversion.
54
+ """
55
+ for root, _, files in os.walk(folder_path):
56
+ for file in files:
57
+ if file.endswith(".svg"):
58
+ svg_path = os.path.join(root, file)
59
+ png_path = os.path.splitext(svg_path)[0] + ".png"
60
+
61
+ # Skip if PNG already exists
62
+ if os.path.exists(png_path):
63
+ print(f"Skipping: {svg_path} (PNG already exists)")
64
+ continue
65
+
66
+ # Convert svg to png
67
+ try:
68
+ cairosvg.svg2png(url=svg_path, write_to=png_path)
69
+ print(f"Converted: {svg_path} -> {png_path}")
70
+
71
+ if delete_original:
72
+ os.remove(svg_path)
73
+ print(f"Deleted original SVG: {svg_path}")
74
+
75
+ except Exception as e:
76
+ print(f"⚠️ Failed to convert {svg_path}: {e}")
77
+
78
+ def update_sprite_json(folder_path):
79
+ """
80
+ Opens sprite.json in folder, adds 'objName' key with same value as 'name',
81
+ and 'layerOrder' with value 0 right after objName.
82
+ """
83
+ sprite_json_path = os.path.join(folder_path, "sprite.json")
84
+ if os.path.exists(sprite_json_path):
85
+ try:
86
+ with open(sprite_json_path, "r", encoding="utf-8") as f:
87
+ data = json.load(f)
88
+
89
+ if "name" in data:
90
+ if "objName" not in data and "layerOrder" not in data:
91
+ new_data = {}
92
+ for key, value in data.items():
93
+ new_data[key] = value
94
+ if key == "name":
95
+ new_data["objName"] = value
96
+ new_data["layerOrder"] = 0
97
+ data = new_data
98
+
99
+ with open(sprite_json_path, "w", encoding="utf-8") as f:
100
+ json.dump(data, f, indent=4, ensure_ascii=False)
101
+ print(f"Updated sprite.json in {folder_path} (added objName & layerOrder)")
102
+ else:
103
+ print(f"Skipping sprite.json in {folder_path} (objName/layerOrder already exists)")
104
+ except Exception as e:
105
+ print(f"⚠️ Failed to update sprite.json in {folder_path}: {e}")
106
+
107
+ # Example usage:
108
+ if __name__ == "__main__":
109
+ folder = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\assets\Backdrops"
110
+
111
+ # Step 1: Add .zip suffix to files
112
+ add_zip_suffix_to_all(folder)
113
+
114
+ # Step 2: Extract all .zip files (skip if already extracted)
115
+ extracted_folders = extract_all_zip_files(folder)
116
+
117
+ # Step 3: Convert .svg to .png in each extracted folder (skip if .png already exists)
118
+ for extracted in extracted_folders:
119
+ convert_svgs_to_pngs(extracted, delete_original=False)
120
+
121
+ # Step 4: Update sprite.json (add objName & layerOrder)
122
+ update_sprite_json(extracted)
openclip_embeddings.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
test_app.ipynb ADDED
The diff for this file is too large to render. See raw diff