from flask import Flask, render_template, Response, flash, redirect, url_for, request, jsonify import cv2 import numpy as np from unstructured.partition.pdf import partition_pdf import json, base64, io, os from PIL import Image, ImageEnhance, ImageDraw from imutils.perspective import four_point_transform from dotenv import load_dotenv import pytesseract from transformers import AutoProcessor, AutoModelForImageTextToText from langchain_community.document_loaders.image_captions import ImageCaptionLoader app = Flask(__name__) pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" poppler_path=r"C:\poppler-23.11.0\Library\bin" count = 0 PDF_GET = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf" OUTPUT_FOLDER = "OUTPUTS" DETECTED_IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER,"DETECTED_IMAGE") IMAGE_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "SCANNED_IMAGE") JSON_FOLDER_PATH = os.path.join(OUTPUT_FOLDER, "EXTRACTED_JSON") for path in [OUTPUT_FOLDER, IMAGE_FOLDER_PATH, DETECTED_IMAGE_FOLDER_PATH, JSON_FOLDER_PATH]: os.makedirs(path, exist_ok=True) # Model Initialization smolvlm256m_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct") smolvlm256m_model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct").to("cpu") # SmolVLM Image Captioning functioning def get_smolvlm_caption(image: Image.Image, prompt: str = "") -> str: # Ensure exactly one token if "" not in prompt: prompt = f" {prompt.strip()}" num_image_tokens = prompt.count("") if num_image_tokens != 1: raise ValueError(f"Prompt must contain exactly 1 token. Found {num_image_tokens}") inputs = smolvlm256m_processor(images=[image], text=[prompt], return_tensors="pt").to("cpu") output_ids = smolvlm256m_model.generate(**inputs, max_new_tokens=100) return smolvlm256m_processor.decode(output_ids[0], skip_special_tokens=True) # --- FUNCTION: Extract images from saved PDF --- def extract_images_from_pdf(pdf_path, output_json_path): ''' Extract images from PDF and generate structured sprite JSON ''' pdf_filename = os.path.splitext(os.path.basename(pdf_path))[0] # e.g., "scratch_crab" pdf_dir_path = os.path.dirname(pdf_path).replace("/", "\\") # Create subfolders extracted_image_subdir = os.path.join(DETECTED_IMAGE_FOLDER_PATH, pdf_filename) json_subdir = os.path.join(JSON_FOLDER_PATH, pdf_filename) os.makedirs(extracted_image_subdir, exist_ok=True) os.makedirs(json_subdir, exist_ok=True) # Output paths output_json_path = os.path.join(json_subdir, "extracted.json") final_json_path = os.path.join(json_subdir, "extracted_sprites.json") elements = partition_pdf( filename=pdf_path, strategy="hi_res", extract_image_block_types=["Image"], extract_image_block_to_payload=True, # Set to True to get base64 in output ) with open(output_json_path, "w") as f: json.dump([element.to_dict() for element in elements], f, indent=4) # Display extracted images with open(output_json_path, 'r') as file: file_elements = json.load(file) # extracted_images_dir = os.path.join(os.path.dirname(output_json_path), "extracted_images") # os.makedirs(extracted_images_dir, exist_ok=True) # Prepare manipulated sprite JSON structure manipulated_json = {} # Final manipulated file (for captions) final_json_path = output_json_path.replace(".json", "_sprites.json") # If JSON already exists, load it and find the next available Sprite number if os.path.exists(final_json_path): with open(final_json_path, "r") as existing_file: manipulated = json.load(existing_file) # Determine the next available index (e.g., Sprite 4 if 1–3 already exist) existing_keys = [int(k.replace("Sprite ", "")) for k in manipulated.keys()] start_count = max(existing_keys, default=0) + 1 else: start_count = 1 sprite_count = start_count for i,element in enumerate(file_elements): if "image_base64" in element["metadata"]: image_data = base64.b64decode(element["metadata"]["image_base64"]) image = Image.open(io.BytesIO(image_data)).convert("RGB") image.show(title=f"Extracted Image {i+1}") image_path = os.path.join(extracted_image_subdir, f"Sprite_{i+1}.png") image.save(image_path) description = get_smolvlm_caption(image, prompt="Give a brief Description") name = get_smolvlm_caption(image, prompt="give a short name/title of this Image.") manipulated_json[f"Sprite {sprite_count}"] = { "name": name, "base64": element["metadata"]["image_base64"], "file-path": pdf_dir_path, "description":description } sprite_count += 1 # Save manipulated JSON with open(final_json_path, "w") as sprite_file: json.dump(manipulated_json, sprite_file, indent=4) print(f"✅ Manipulated sprite JSON saved: {final_json_path}") return final_json_path, manipulated_json # API endpoint @app.route('/process_static_pdf', methods=['POST']) def process_static_pdf(): # Option 1: Use hardcoded static PDF pdf_path = r"E:\Pratham\2025\Harsh Sir\Scratch Vision\images\scratch_crab.pdf" # Optional: Allow override via JSON request body if request.json and "pdf_path" in request.json: pdf_path = request.json["pdf_path"] if not os.path.isfile(pdf_path): return jsonify({"error": f"File not found: {pdf_path}"}), 400 # json_path = os.path.join(JSON_FOLDER_PATH, "extracted.json") json_path = None output_path, result = extract_images_from_pdf(pdf_path, json_path) return jsonify({ "message": "✅ PDF processed successfully", "output_json": output_path, "sprites": result }) if __name__ == '__main__': app.run(host='0.0.0.0', port=7860, debug=True)