Spaces:
Runtime error
Runtime error
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import gradio as gr | |
| # Use the base model's ID | |
| base_model_id = "mistralai/Mistral-7B-v0.1" | |
| model_directory = "Tonic/mistralmed" | |
| # Load the fine-tuned model "Tonic/mistralmed" | |
| model = AutoModelForCausalLM.from_pretrained(model_directory, token="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") | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| tokenizer.padding_side = 'left' | |
| class ChatBot: | |
| def __init__(self): | |
| self.history = [] | |
| def predict(self, input): | |
| new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors="pt") | |
| flat_history = [item for sublist in self.history for item in sublist] | |
| flat_history_tensor = torch.tensor(flat_history).unsqueeze(dim=0) | |
| bot_input_ids = torch.cat([flat_history_tensor, new_user_input_ids], dim=-1) if self.history else new_user_input_ids | |
| chat_history_ids = model.generate(bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id) | |
| self.history.append(chat_history_ids[:, bot_input_ids.shape[-1]:].tolist()[0]) | |
| response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
| return response | |
| bot = ChatBot() | |
| title = "👋🏻Welcome to Tonic's MistralMed Chat🚀" | |
| description = "You can use this Space to test out the current model (MistralMed) or duplicate this Space and use it for any other model on 🤗HuggingFace. Join me on Discord to build together." | |
| examples = [["What is the boiling point of nitrogen"]] | |
| iface = gr.Interface( | |
| fn=bot.predict, | |
| title=title, | |
| description=description, | |
| examples=examples, | |
| inputs="text", | |
| outputs="text", | |
| theme="ParityError/Anime" | |
| ) | |
| iface.launch() | |