Spaces:
Sleeping
Sleeping
Commit
·
7e27e2f
1
Parent(s):
3f7d824
feat: initial version
Browse files- app.py +128 -0
- demo.py +23 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import duckdb
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import polars as pl
|
| 4 |
+
from datasets import load_dataset
|
| 5 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 6 |
+
from model2vec import StaticModel
|
| 7 |
+
|
| 8 |
+
global ds
|
| 9 |
+
global df
|
| 10 |
+
|
| 11 |
+
# Load a model from the HuggingFace hub (in this case the potion-base-8M model)
|
| 12 |
+
model_name = "minishlab/M2V_multilingual_output"
|
| 13 |
+
model = StaticModel.from_pretrained(model_name)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def get_iframe(hub_repo_id):
|
| 17 |
+
if not hub_repo_id:
|
| 18 |
+
raise ValueError("Hub repo id is required")
|
| 19 |
+
url = f"https://huggingface.co/datasets/{hub_repo_id}/embed/viewer"
|
| 20 |
+
iframe = f"""
|
| 21 |
+
<iframe
|
| 22 |
+
src="{url}"
|
| 23 |
+
frameborder="0"
|
| 24 |
+
width="100%"
|
| 25 |
+
height="600px"
|
| 26 |
+
></iframe>
|
| 27 |
+
"""
|
| 28 |
+
return iframe
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def load_dataset_from_hub(hub_repo_id):
|
| 32 |
+
global ds
|
| 33 |
+
ds = load_dataset(hub_repo_id)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def get_columns(split: str):
|
| 37 |
+
global ds
|
| 38 |
+
ds_split = ds[split]
|
| 39 |
+
return gr.Dropdown(
|
| 40 |
+
choices=ds_split.column_names,
|
| 41 |
+
value=ds_split.column_names[0],
|
| 42 |
+
label="Select a column",
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_splits():
|
| 47 |
+
global ds
|
| 48 |
+
splits = list(ds.keys())
|
| 49 |
+
return gr.Dropdown(choices=splits, value=splits[0], label="Select a split")
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def vectorize_dataset(split: str, column: str):
|
| 53 |
+
global df
|
| 54 |
+
global ds
|
| 55 |
+
df = ds[split].to_polars()
|
| 56 |
+
embeddings = model.encode(df[column])
|
| 57 |
+
df = df.with_columns(pl.Series(embeddings).alias("embeddings"))
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
def run_query(query: str):
|
| 61 |
+
global df
|
| 62 |
+
vector = model.encode(query)
|
| 63 |
+
return duckdb.sql(
|
| 64 |
+
query=f"""
|
| 65 |
+
SELECT *
|
| 66 |
+
FROM df
|
| 67 |
+
ORDER BY array_distance(embeddings, {vector.tolist()}::FLOAT[256])
|
| 68 |
+
LIMIT 5
|
| 69 |
+
"""
|
| 70 |
+
).to_df()
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
with gr.Blocks() as demo:
|
| 74 |
+
gr.HTML(
|
| 75 |
+
"""
|
| 76 |
+
<h1>Vector Search any Hugging Face Dataset</h1>
|
| 77 |
+
<p>
|
| 78 |
+
This app allows you to vector search any Hugging Face dataset.
|
| 79 |
+
You can search for the nearest neighbors of a query vector, or
|
| 80 |
+
perform a similarity search on a dataframe.
|
| 81 |
+
</p>
|
| 82 |
+
<p>
|
| 83 |
+
This app uses the <a href="https://huggingface.co/minishlab/M2V_multilingual_output">M2V_multilingual_output</a> model from the Hugging Face Hub.
|
| 84 |
+
</p>
|
| 85 |
+
"""
|
| 86 |
+
)
|
| 87 |
+
with gr.Row():
|
| 88 |
+
with gr.Column():
|
| 89 |
+
search_in = HuggingfaceHubSearch(
|
| 90 |
+
label="Search Huggingface Hub",
|
| 91 |
+
placeholder="Search for models on Huggingface",
|
| 92 |
+
search_type="dataset",
|
| 93 |
+
sumbit_on_select=True,
|
| 94 |
+
)
|
| 95 |
+
with gr.Row():
|
| 96 |
+
search_out = gr.HTML(label="Search Results")
|
| 97 |
+
search_in.submit(get_iframe, inputs=search_in, outputs=search_out)
|
| 98 |
+
|
| 99 |
+
btn_load_dataset = gr.Button("Load Dataset")
|
| 100 |
+
|
| 101 |
+
with gr.Row(variant="panel"):
|
| 102 |
+
split_dropdown = gr.Dropdown(label="Select a split")
|
| 103 |
+
column_dropdown = gr.Dropdown(label="Select a column")
|
| 104 |
+
btn_vectorize_dataset = gr.Button("Vectorize")
|
| 105 |
+
|
| 106 |
+
btn_load_dataset.click(
|
| 107 |
+
load_dataset_from_hub, inputs=search_in, show_progress=True
|
| 108 |
+
).then(fn=get_splits, outputs=split_dropdown).then(
|
| 109 |
+
fn=get_columns, inputs=split_dropdown, outputs=column_dropdown
|
| 110 |
+
)
|
| 111 |
+
split_dropdown.change(
|
| 112 |
+
fn=get_columns, inputs=split_dropdown, outputs=column_dropdown
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
btn_vectorize_dataset.click(
|
| 116 |
+
fn=vectorize_dataset,
|
| 117 |
+
inputs=[split_dropdown, column_dropdown],
|
| 118 |
+
show_progress=True,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
with gr.Row(variant="panel"):
|
| 122 |
+
query_input = gr.Textbox(label="Query")
|
| 123 |
+
|
| 124 |
+
btn_run = gr.Button("Run")
|
| 125 |
+
results_output = gr.Dataframe(label="Results")
|
| 126 |
+
|
| 127 |
+
btn_run.click(fn=run_query, inputs=query_input, outputs=results_output)
|
| 128 |
+
demo.launch()
|
demo.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import duckdb
|
| 2 |
+
import polars as pl
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from model2vec import StaticModel
|
| 5 |
+
|
| 6 |
+
# Load a model from the HuggingFace hub (in this case the potion-base-8M model)
|
| 7 |
+
model_name = "minishlab/M2V_multilingual_output"
|
| 8 |
+
model = StaticModel.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Make embeddings
|
| 11 |
+
ds = load_dataset("fka/awesome-chatgpt-prompts")
|
| 12 |
+
df = ds["train"].to_polars()
|
| 13 |
+
embeddings = model.encode(df["prompt"])
|
| 14 |
+
df = df.with_columns(pl.Series(embeddings).alias("embeddings"))
|
| 15 |
+
vector = model.encode("vector search", show_progress_bar=True)
|
| 16 |
+
duckdb.sql(
|
| 17 |
+
query=f"""
|
| 18 |
+
SELECT *
|
| 19 |
+
FROM df
|
| 20 |
+
ORDER BY array_distance(embeddings, {vector.tolist()}::FLOAT[256])
|
| 21 |
+
LIMIT 1
|
| 22 |
+
"""
|
| 23 |
+
).show()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
polars
|
| 2 |
+
datasets
|
| 3 |
+
model2vec
|
| 4 |
+
duckdb
|
| 5 |
+
gradio
|
| 6 |
+
gradio-huggingfacehub-search
|