File size: 1,913 Bytes
a22e84b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import opik
from fastapi import FastAPI, HTTPException
from opik import opik_context
from pydantic import BaseModel

from llm_engineering import settings
from llm_engineering.application.rag.retriever import ContextRetriever
from llm_engineering.application.utils import misc
from llm_engineering.domain.embedded_chunks import EmbeddedChunk
from llm_engineering.infrastructure.opik_utils import configure_opik
from llm_engineering.model.inference import InferenceExecutor, LLMInferenceSagemakerEndpoint

configure_opik()

app = FastAPI()


class QueryRequest(BaseModel):
    query: str


class QueryResponse(BaseModel):
    answer: str


@opik.track
def call_llm_service(query: str, context: str | None) -> str:
    llm = LLMInferenceSagemakerEndpoint(
        endpoint_name=settings.SAGEMAKER_ENDPOINT_INFERENCE, inference_component_name=None
    )
    answer = InferenceExecutor(llm, query, context).execute()

    return answer


@opik.track
def rag(query: str) -> str:
    retriever = ContextRetriever(mock=False)
    documents = retriever.search(query, k=3)
    context = EmbeddedChunk.to_context(documents)

    answer = call_llm_service(query, context)

    opik_context.update_current_trace(
        tags=["rag"],
        metadata={
            "model_id": settings.HF_MODEL_ID,
            "embedding_model_id": settings.TEXT_EMBEDDING_MODEL_ID,
            "temperature": settings.TEMPERATURE_INFERENCE,
            "query_tokens": misc.compute_num_tokens(query),
            "context_tokens": misc.compute_num_tokens(context),
            "answer_tokens": misc.compute_num_tokens(answer),
        },
    )

    return answer


@app.post("/rag", response_model=QueryResponse)
async def rag_endpoint(request: QueryRequest):
    try:
        answer = rag(query=request.query)

        return {"answer": answer}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e)) from e