Spaces:
Runtime error
Runtime error
import concurrent.futures | |
import opik | |
from loguru import logger | |
from qdrant_client.models import FieldCondition, Filter, MatchValue, Range, Distance | |
from llm_engineering.application import utils | |
from llm_engineering.application.preprocessing.dispatchers import EmbeddingDispatcher | |
from llm_engineering.domain.embedded_chunks import ( | |
EmbeddedArticleChunk, | |
EmbeddedChunk, | |
EmbeddedPostChunk, | |
EmbeddedRepositoryChunk, | |
) | |
from llm_engineering.domain.queries import EmbeddedQuery, Query | |
from llm_engineering.domain.video_chunks import EmbeddedVideoChunk | |
from .query_expansion import QueryExpansion | |
from .reranking import Reranker | |
from .self_query import SelfQuery | |
from .multimodal_dispatcher import MultimodalEmbeddingDispatcher | |
from typing import Union | |
class ContextRetriever: | |
def __init__(self, mock: bool = False) -> None: | |
self._query_expander = QueryExpansion(mock=mock) | |
self._metadata_extractor = SelfQuery(mock=mock) | |
self._reranker = Reranker(mock=mock) | |
def search(self, query: Union[str, Query], k: int = 3, expand_to_n_queries: int = 3) -> list: | |
# Existing code | |
query_model = Query.from_str(query) if isinstance(query, str) else query | |
query_model = self._metadata_extractor.generate(query_model) | |
n_generated_queries = self._query_expander.generate(query_model, expand_to_n=expand_to_n_queries) | |
# Initialize n_k_documents with empty list | |
n_k_documents = [] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
if n_generated_queries: | |
search_tasks = [executor.submit(self._search, _query_model, k) | |
for _query_model in n_generated_queries] | |
# Handle potential None results from tasks | |
n_k_documents = [task.result() or [] for task in concurrent.futures.as_completed(search_tasks)] | |
# Ensure we're always working with a list of lists | |
n_k_documents = n_k_documents or [[]] | |
# Safe flattening with None filtering | |
n_k_documents = utils.misc.flatten([docs for docs in n_k_documents if docs is not None]) | |
if n_k_documents: | |
k_documents = self.rerank(query, chunks=n_k_documents, keep_top_k=k) | |
else: | |
k_documents = [] | |
return k_documents | |
def _search(self, query: Query, k: int = 3) -> list[EmbeddedChunk]: | |
assert k >= 3, "k should be >= 3" | |
def _search_data_category( | |
data_category_odm: type[EmbeddedChunk], embedded_query: EmbeddedQuery | |
) -> list[EmbeddedChunk]: | |
if embedded_query.author_id: | |
query_filter = Filter( | |
must=[ | |
FieldCondition( | |
key="author_id", | |
match=MatchValue( | |
value=str(embedded_query.author_id), | |
), | |
) | |
] | |
) | |
else: | |
query_filter = None | |
return data_category_odm.search( | |
query_vector=embedded_query.embedding, | |
limit=k // 3, | |
query_filter=query_filter, | |
) | |
embedded_query: EmbeddedQuery = EmbeddingDispatcher.dispatch(query) | |
post_chunks = _search_data_category(EmbeddedPostChunk, embedded_query) | |
articles_chunks = _search_data_category(EmbeddedArticleChunk, embedded_query) | |
repositories_chunks = _search_data_category(EmbeddedRepositoryChunk, embedded_query) | |
retrieved_chunks = post_chunks + articles_chunks + repositories_chunks | |
return retrieved_chunks | |
def rerank(self, query: str | Query, chunks: list[EmbeddedChunk], keep_top_k: int) -> list[EmbeddedChunk]: | |
if isinstance(query, str): | |
query = Query.from_str(query) | |
reranked_documents = self._reranker.generate(query=query, chunks=chunks, keep_top_k=keep_top_k) | |
logger.info(f"{len(reranked_documents)} documents reranked successfully.") | |
return reranked_documents | |
class VideoContextRetriever(ContextRetriever): | |
def _search(self, query: Query, k: int = 3) -> list[EmbeddedChunk]: | |
def _search_video_category(self, embedded_query: EmbeddedQuery, k: int): | |
return EmbeddedVideoChunk.search( | |
query_vector=embedded_query.embedding, | |
limit=k, | |
query_filter=self._create_time_filter(embedded_query) | |
) | |