purpleriann's picture
Upload folder using huggingface_hub
a22e84b verified
import subprocess
from pathlib import Path
from typing import List
import webvtt
import json
import torch
from llm_engineering.domain.video_chunks import EmbeddedVideoChunk
from llm_engineering.domain.queries import Query
from .multimodal_dispatcher import MultimodalEmbeddingDispatcher, ImageEmbedder, TextEmbedder
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct, VectorParams, Distance
from qdrant_client.http.exceptions import UnexpectedResponse
import uuid
import hashlib
import numpy as np
from typing import Set
import time
import psutil
from tqdm import tqdm
from contextlib import nullcontext
from PIL import Image, ImageDraw, ImageFont
import ffmpeg
# Make spacy optional
try:
import spacy
SPACY_AVAILABLE = True
except ImportError:
SPACY_AVAILABLE = False
print("Spacy not available, using simplified text processing")
import hashlib
import uuid
# Remove bertopic dependency
try:
from bertopic import BERTopic
BERTOPIC_AVAILABLE = True
except ImportError:
BERTOPIC_AVAILABLE = False
print("BERTopic not available, using simplified topic modeling")
from sentence_transformers import SentenceTransformer
class VideoIngester:
def __init__(self, video_root: str):
self.video_root = Path(video_root)
self.checkpoint_file = self.video_root / ".processed_videos.json"
self.processed_frames_file = self.video_root / ".processed_frames.json"
self.processed_frames = self._load_processed_frames()
self.processed_videos = self._load_checkpoint()
self.nlp = None
self.text_embedder = None
self.image_embedder = None
try:
# Use multi-threaded execution
cv2.setNumThreads(4)
except:
pass
# Initialize text embedder
try:
from llm_engineering.application.rag.multimodal_dispatcher import TextEmbedder, ImageEmbedder
self.text_embedder = TextEmbedder()
self.image_embedder = ImageEmbedder()
print("Initialized embedders")
except Exception as e:
print("Failed to load embedders: {}".format(e))
# Load NLP if spaCy is available
if SPACY_AVAILABLE:
try:
import spacy
# Use smaller model for efficiency
try:
self.nlp = spacy.load("en_core_web_sm")
except:
# Download model if not found
spacy.cli.download("en_core_web_sm")
self.nlp = spacy.load("en_core_web_sm")
print("Loaded NLP model")
except Exception as e:
print("NLP model unavailable: {}. Using fallbacks.".format(e))
# Try to load BERTopic
self.topic_model = None
if BERTOPIC_AVAILABLE:
try:
from bertopic import BERTopic
# Use minimal model
self.topic_model = BERTopic(verbose=True)
print("Loaded BERTopic")
except Exception as e:
print("BERTopic unavailable: {}".format(e))
# Use CLIP-based text encoder for consistent embedding dimensions
# instead of sentence-transformers which has different dimensions
self.sentence_model = self.image_embedder
def _merge_subtitles(self, subtitles: List[dict]) -> List[dict]:
"""Merge adjacent subtitles into larger chunks for better context"""
merged = []
if not subtitles:
return merged
current_text = [subtitles[0]["text"]]
current_start = subtitles[0]["start"]
current_end = subtitles[0]["end"]
# Configure max merge duration
max_duration = 30.0 # Maximum duration for merged subtitles in seconds
for i in range(1, len(subtitles)):
sub = subtitles[i]
# Check if this subtitle is within a reasonable time gap (2 seconds) of the previous one
time_gap = sub["start"] - current_end
duration_so_far = current_end - current_start
if time_gap <= 2.0 and duration_so_far < max_duration:
# Continue merging
current_text.append(sub["text"])
current_end = sub["end"]
else:
# Merge complete, add to results and start a new segment
merged.append({
"start": current_start,
"end": current_end,
"text": " ".join(current_text)
})
current_text = [sub["text"]]
current_start = sub["start"]
current_end = sub["end"]
# Don't forget the last segment
if current_text:
merged.append({
"start": current_start,
"end": current_end,
"text": " ".join(current_text)
})
print("Merged {} subtitle entries into {} chunks".format(len(subtitles), len(merged)))
return merged
def process_video_library(self, force_reprocess: bool = False):
"""Process all videos in the root directory"""
if not self.video_root.exists():
print("Error: Video root directory does not exist: {}".format(self.video_root))
return
print("Processing videos from: {}".format(self.video_root))
# Load checkpoint if exists
self.processed_videos = self._load_checkpoint()
print("Already processed {} videos".format(len(self.processed_videos)))
# Debug output to see which videos were already processed
if self.processed_videos:
print("Previously processed videos:")
for vid in sorted(self.processed_videos):
print(" - {}".format(vid))
# Get list of folders containing mp4 files
folders = []
for path in self.video_root.glob("*"):
if path.is_dir():
mp4_files = list(path.glob("*.mp4"))
if mp4_files:
folders.append(path)
print("Found {} video folders".format(len(folders)))
# Count how many will be processed
to_process = [f for f in folders if force_reprocess or f.name not in self.processed_videos]
print("Will process {} videos ({} skipped)".format(
len(to_process), len(folders) - len(to_process)))
# Process each folder
start_time = time.time()
for i, folder in enumerate(folders):
folder_id = folder.name
# Skip if already processed and not forced to reprocess
if folder_id in self.processed_videos and not force_reprocess:
print("Skipping {} (already processed)".format(folder_id))
continue
try:
print("\n[{}/{}] Processing {}".format(i+1, len(folders), folder_id))
# Log resource utilization
self._log_resources()
# Process the folder
self._process_video_folder(folder)
# Add to processed list and update checkpoint
self.processed_videos.add(folder_id)
self._save_checkpoint()
# Estimate remaining time
elapsed = time.time() - start_time
videos_left = len(to_process) - (i + 1)
videos_processed = i + 1
if videos_processed > 0:
avg_time_per_video = elapsed / videos_processed
eta = avg_time_per_video * videos_left
eta_str = self._format_eta(eta)
print("\nProgress: {}/{} videos ({:.1f}%)".format(
videos_processed, len(to_process),
100.0 * videos_processed / len(to_process)
))
print("Elapsed: {}, Avg: {:.1f}s/video, ETA: {}".format(
self._format_eta(elapsed),
avg_time_per_video,
eta_str
))
except Exception as e:
print("Error processing {}: {}".format(folder_id, str(e)))
# Save checkpoint to avoid reprocessing the same video
self._save_checkpoint()
print("\nAll videos processed!")
print("Total processed videos: {}".format(len(self.processed_videos)))
return
def _accelerated_frame_extraction(self, mp4_path: Path, subtitles: List[dict]) -> List[Path]:
"""Hardware-optimized frame extraction"""
frame_dir = mp4_path.parent / "frames"
frame_dir.mkdir(exist_ok=True)
# Check if there are already frames in the directory
existing_frames = sorted(frame_dir.glob("*.jpg"))
if existing_frames:
print("Found {} existing frames, skipping extraction".format(len(existing_frames)))
return existing_frames
total_duration = sum(sub["end"] - sub["start"] for sub in subtitles)
with tqdm(total=total_duration, desc="Extracting frames", leave=False) as pbar:
# Try to find ffmpeg in common locations
ffmpeg_cmd = None
for cmd in ["/opt/homebrew/bin/ffmpeg", "ffmpeg", "/usr/local/bin/ffmpeg", "/usr/bin/ffmpeg"]:
try:
# Check if the command exists
subprocess.run([cmd, "-version"], capture_output=True, check=True)
ffmpeg_cmd = cmd
print("Found ffmpeg at: {}".format(ffmpeg_cmd))
break
except (subprocess.SubprocessError, FileNotFoundError):
continue
if not ffmpeg_cmd:
print("WARNING: ffmpeg not found, using manual frame extraction")
return self._manual_frame_extraction(mp4_path, subtitles)
cmd = [
ffmpeg_cmd,
"-y", # Overwrite output files without asking
"-i", str(mp4_path),
"-vf", "fps=1",
"-vsync", "0",
str(frame_dir / "frame_%04d.jpg")
]
try:
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
# Process the output to update progress
for line in result.stderr.split('\n'):
if "frame=" in line:
try:
# Extract frame number and update progress
frame_num = int(line.split("frame=")[1].split()[0])
pbar.update(1)
except (ValueError, IndexError):
pass
except subprocess.CalledProcessError as e:
print("FFmpeg error: {}".format(e.stderr))
print("Falling back to manual frame extraction")
return self._manual_frame_extraction(mp4_path, subtitles)
except FileNotFoundError:
print("FFmpeg not found, falling back to manual frame extraction")
return self._manual_frame_extraction(mp4_path, subtitles)
return sorted(frame_dir.glob("*.jpg"))
def _manual_frame_extraction(self, mp4_path: Path, subtitles: List[dict]) -> List[Path]:
"""Fallback method when ffmpeg is not available - create placeholder image files"""
print("Using manual frame extraction (FALLBACK MODE)")
frame_dir = mp4_path.parent / "frames"
frame_dir.mkdir(exist_ok=True)
# Try importing PIL for image creation
try:
from PIL import Image, ImageDraw, ImageFont
can_create_images = True
print("PIL is available for image creation")
except ImportError:
can_create_images = False
print("PIL not available, will create empty placeholder files")
# For each subtitle, create a simple blank image for each second
frame_paths = []
# Ensure at least one frame is created even if no subtitles
if not subtitles:
print("No subtitles provided, creating a single frame")
subtitles = [{"start": 0, "end": 1, "text": "No subtitle data"}]
with tqdm(total=len(subtitles), desc="Creating placeholder frames", leave=False) as pbar:
for subtitle in subtitles:
try:
start_time = int(subtitle["start"])
end_time = int(subtitle["end"])
# Create one frame per second with a maximum of 5 frames per segment
frame_count = min(end_time - start_time + 1, 5)
seconds = list(range(start_time, end_time + 1))
if frame_count < 5 and len(seconds) > 0:
# Use all available seconds
seconds_to_use = seconds
else:
# Sample evenly from the range
step = max(1, len(seconds) // 5)
seconds_to_use = seconds[::step][:5] # Take at most 5
# Always ensure at least one frame
if not seconds_to_use and start_time <= end_time:
seconds_to_use = [start_time]
print("Creating {} placeholder frames for segment {}-{}".format(
len(seconds_to_use), start_time, end_time))
for second in seconds_to_use:
frame_path = frame_dir / "frame_{:04d}.jpg".format(second)
# If the frame already exists, skip creation
if frame_path.exists():
print("Frame already exists: {}".format(frame_path))
frame_paths.append(frame_path)
continue
if can_create_images:
try:
# Create a white background
img = Image.new('RGB', (224, 224), color='white')
# Add timestamp and subtitle text
draw = ImageDraw.Draw(img)
# Add timestamp
draw.text((10, 10), "Timestamp: {}s".format(second), fill="black")
# Add subtitle text (wrap it if needed)
text = subtitle.get("text", "No text")
if len(text) > 30:
wrapped_text = ""
for i in range(0, len(text), 30):
wrapped_text += text[i:i+30] + "\n"
text = wrapped_text
draw.text((10, 40), text, fill="black")
# Save the image
img.save(str(frame_path), quality=85)
print("Created image frame: {}".format(frame_path))
except Exception as e:
print("Failed to create image: {}".format(e))
# Create an empty file as fallback
with open(frame_path, 'w') as f:
f.write("Placeholder for timestamp: {}s".format(second))
else:
# Create an empty file as fallback
with open(frame_path, 'w') as f:
f.write("Placeholder for timestamp: {}s".format(second))
frame_paths.append(frame_path)
except Exception as e:
print("Error in manual frame extraction: {}".format(e))
# Ensure at least one frame is created even on error
timestamp = int(subtitle.get("start", 0))
frame_path = frame_dir / "frame_{:04d}.jpg".format(timestamp)
with open(frame_path, 'w') as f:
f.write("Error placeholder for timestamp: {}s".format(timestamp))
frame_paths.append(frame_path)
pbar.update(1)
if not frame_paths:
# Last resort - create at least one empty frame
print("No frames created, adding emergency placeholder")
frame_path = frame_dir / "frame_0000.jpg"
with open(frame_path, 'w') as f:
f.write("Emergency placeholder frame")
frame_paths.append(frame_path)
print("Created {} placeholder frames".format(len(frame_paths)))
return sorted(frame_paths)
def _create_frame_subtitle_map(self, frame_paths: List[Path], subtitles: List[dict]) -> dict:
frame_to_subtitle = {}
for i, sub in enumerate(subtitles):
start_frame = int(sub["start"])
end_frame = int(sub["end"])
for fn in range(start_frame, end_frame + 1):
frame_name = "frame_{:04d}.jpg".format(fn)
# Store the subtitle index instead of text
frame_to_subtitle[frame_name] = i
return frame_to_subtitle
def _clean_text_for_embedding(self, text):
"""Clean and prepare text for embedding"""
if not text:
return ""
try:
# Remove excessive whitespace and newlines
import re
text = re.sub(r'\s+', ' ', text).strip()
# Remove or replace problematic characters
text = re.sub(r'[^\w\s.,!?\'"-]', '', text)
return text
except Exception as e:
print("Error cleaning text: {}".format(e))
return text.strip() if text else ""
def _optimized_embedding_processing(self, video_id: str, frame_paths: List[Path],
subtitles: List[dict], metadata: dict):
"""Process embeddings in batches to optimize memory usage"""
# Get sentences and embeddings using CLIP text encoder for consistency
chunks = []
text_embedder = TextEmbedder()
if len(subtitles) == 0:
print("No subtitles found for {}".format(video_id))
return []
# Ensure embedders are initialized
try:
print("Initializing embedders")
if self.text_embedder is None:
print("Creating new text embedder")
self.text_embedder = TextEmbedder()
if self.image_embedder is None:
print("Creating new image embedder")
from llm_engineering.application.rag.multimodal_dispatcher import ImageEmbedder
self.image_embedder = ImageEmbedder()
except Exception as e:
print("Error initializing embedders: {}. Using simple TextEmbedder.".format(e))
if self.text_embedder is None:
self.text_embedder = TextEmbedder()
# Reduce batch size for more stability
batch_size = 64
# Print video processing status
print("Processing video {} with {} subtitles segments".format(video_id, len(subtitles)))
# Try to create a zero vector once for reuse
try:
zero_vector = [0.0] * 512 # CLIP uses 512 dimensions
except Exception:
zero_vector = None
# Process in smaller batches
for i in range(0, len(subtitles), batch_size):
batch_subtitles = subtitles[i:i+batch_size]
print("Processing subtitle batch {}/{} (segments {}-{})".format(
i//batch_size + 1,
(len(subtitles)-1)//batch_size + 1,
i, min(i+batch_size, len(subtitles))
))
current_batch_chunks = []
for subtitle in batch_subtitles:
try:
# Extract frames for this segment - limit to max 3 frames per subtitle
frame_paths_for_segment = self._extract_frames(
Path(metadata["mp4_path"]),
subtitle["start"],
subtitle["end"]
)
# Limit number of frames to process
if frame_paths_for_segment and len(frame_paths_for_segment) > 3:
print("Limiting frames from {} to 3 for subtitle at {}".format(
len(frame_paths_for_segment), subtitle['start']))
# Take first, middle and last frame
indices = [0, len(frame_paths_for_segment)//2, -1]
frame_paths_for_segment = [frame_paths_for_segment[i] for i in indices if i < len(frame_paths_for_segment)]
# Create chunk with cleaned text
original_content = subtitle["text"]
# Clean text for better embedding
content = self._clean_text_for_embedding(original_content)
# Skip empty content
if not content or not content.strip():
print("Skipping empty content at time {}".format(subtitle["start"]))
continue
# Create a unique ID for this chunk
chunk_id = "{}_{}".format(video_id, int(subtitle["start"]))
# Create embeddings with better error handling
text_embedding = None
# First try with image embedder (CLIP) if text isn't too long
clip_succeeded = False
if self.image_embedder is not None and len(content) < 500:
try:
print("Encoding text with CLIP: {}...".format(content[:50]))
text_embedding = self.image_embedder.encode_text(content)
if text_embedding:
print("Text embedding done, dimension: {}".format(len(text_embedding)))
clip_succeeded = True
else:
print("Image embedder returned None, falling back")
text_embedding = None
except Exception as e:
print("Failed to embed text with CLIP: {}".format(e))
text_embedding = None
elif self.image_embedder is not None:
print("Text too long for CLIP ({} chars), using fallback embedder".format(len(content)))
# Fall back to text embedder if needed
if text_embedding is None:
try:
print("Using sentence transformer for text")
if self.text_embedder:
text_embedding = self.text_embedder.encode(content)
else:
text_embedding = text_embedder.encode(content)
# Ensure we have 512 dimensions for compatibility
if text_embedding and len(text_embedding) != 512:
print("Adjusting dimensions from {} to 512".format(len(text_embedding)))
if len(text_embedding) < 512:
text_embedding = text_embedding + [0.0] * (512 - len(text_embedding))
else:
text_embedding = text_embedding[:512]
print("Created text embedding with sentence transformer, dim: {}".format(len(text_embedding) if text_embedding else "None"))
except Exception as e:
print("Text embedding fallback failed: {}".format(e))
# Last resort fallback - zero embedding
text_embedding = zero_vector or [0.0] * 512
# Ensure embedding is valid
if not text_embedding or len(text_embedding) != 512:
print("Invalid embedding, using zeros")
text_embedding = zero_vector or [0.0] * 512
# Create frame embeddings if possible
frame_embeddings = []
if clip_succeeded: # Only attempt frame embeddings if CLIP text worked
for frame_idx, frame in enumerate(frame_paths_for_segment):
try:
if self.image_embedder is not None:
print("Encoding frame {}/{}".format(frame_idx + 1, len(frame_paths_for_segment)))
embedding = self.image_embedder.encode(str(frame))
if embedding is not None:
frame_embeddings.append(embedding)
except Exception as e:
print("Error embedding frame {}: {}".format(frame, e))
else:
print("Skipping frame embeddings since CLIP failed with text")
# Create a chunk
try:
chunk = EmbeddedVideoChunk(
video_id=video_id,
document_id=chunk_id,
start_time=subtitle["start"],
end_time=subtitle["end"],
content=content,
embedding=text_embedding,
frame_paths=[str(p) for p in frame_paths_for_segment] if frame_paths_for_segment else [],
frame_embeddings=frame_embeddings if frame_embeddings else [[0.0] * 512], # Match CLIP dimension
author_id=metadata.get("uploader", "unknown").replace(" ", "_").lower(),
author_full_name=metadata.get("uploader", "unknown")
)
current_batch_chunks.append(chunk)
print("Created chunk for segment {}-{}, content: {}...".format(
subtitle["start"], subtitle["end"], content[:50]))
except Exception as e:
print("Failed to create chunk object: {}".format(e))
except Exception as e:
print("Error processing segment {}-{}: {}".format(
subtitle["start"], subtitle["end"], e))
# Process current batch if we have chunks
if current_batch_chunks:
chunks.extend(current_batch_chunks)
# Store chunks after each batch to avoid memory buildup
try:
print("Storing batch of {} chunks to Qdrant".format(len(current_batch_chunks)))
self._store_chunks(current_batch_chunks)
print("Memory cleared after storing batch")
except Exception as e:
print("Error storing chunks: {}".format(e))
# Clear batch to free memory
current_batch_chunks = []
return chunks # Return any remaining chunks that weren't stored
def _log_resources(self):
"""System resource monitoring"""
mem = psutil.virtual_memory()
print("\nSystem Resources | CPU: {}% | "
"Memory: {:.1f}/{:.1f}GB | "
"GPU Memory: {:.1f}GB".format(
psutil.cpu_percent(),
mem.used/1e9,
mem.total/1e9,
self._get_gpu_memory()
))
def _get_gpu_memory(self) -> float:
"""Get unified memory usage"""
return psutil.virtual_memory().used / 1e9
def _format_eta(self, seconds: float) -> str:
return time.strftime("%H:%M:%S", time.gmtime(seconds))
def _load_checkpoint(self) -> Set[str]:
if self.checkpoint_file.exists():
try:
with open(self.checkpoint_file) as f:
return set(json.load(f))
except (json.JSONDecodeError, IOError):
print("Corrupted checkpoint file, resetting...")
return set()
return set()
def _save_checkpoint(self):
"""Save the set of processed video IDs to checkpoint file"""
with open(self.checkpoint_file, "w") as f:
# Don't reload the checkpoint, use the current processed_videos set
json.dump(list(self.processed_videos), f)
print("Saved checkpoint with {} processed videos".format(len(self.processed_videos)))
def _process_video_folder(self, folder: Path):
"""Process a single video folder"""
# Load video metadata
video_id = folder.name
print("Processing video folder: {}".format(video_id))
try:
# Phase 1: Load metadata and subtitles
print("Phase 1: Loading metadata and subtitles")
metadata = self._load_metadata(folder)
# Find VTT file
vtt_files = list(folder.glob("*.vtt"))
if not vtt_files:
print("No VTT subtitle file found for {}".format(video_id))
return
subtitles = self._parse_subtitles(vtt_files[0])
print("Loaded {} subtitle entries".format(len(subtitles)))
# Merge adjacent subtitles for better context
merged_subtitles = self._merge_subtitles(subtitles)
print("Merged to {} subtitle entries".format(len(merged_subtitles)))
# Phase 2: Find MP4 file
mp4_files = list(folder.glob("*.mp4"))
if not mp4_files:
print("No MP4 file found for {}".format(video_id))
return
mp4_path = mp4_files[0]
metadata["mp4_path"] = str(mp4_path) # Store MP4 path in metadata
print("Using video file: {}".format(mp4_path))
# Phase 3: Process video chunks directly with optimized method
print("Phase 3: Processing video chunks with optimized method")
remaining_chunks = self._optimized_embedding_processing(video_id, [], merged_subtitles, metadata)
# Store any remaining chunks
if remaining_chunks:
print("Storing {} remaining chunks".format(len(remaining_chunks)))
self._store_chunks(remaining_chunks)
print("Successfully processed video {}".format(video_id))
except Exception as e:
print("Error in _process_video_folder for {}: {}".format(video_id, e))
raise
def _load_metadata(self, folder: Path) -> dict:
info_json = next(folder.glob("*.info.json"))
with open(info_json) as f:
metadata = json.load(f)
metadata.setdefault("uploader", "unknown_author")
return metadata
def _parse_subtitles(self, vtt_path: Path) -> List[dict]:
captions = webvtt.read(vtt_path)
print("Raw subtitles found: {}".format(len(captions)))
valid_captions = []
for caption in captions:
print("Caption: {} -> {}: {}...".format(caption.start, caption.end, caption.text[:50]))
if caption.end_in_seconds > caption.start_in_seconds:
valid_captions.append({
"start": caption.start_in_seconds,
"end": caption.end_in_seconds,
"text": caption.text
})
print("Valid subtitles: {}".format(len(valid_captions)))
return valid_captions
def _create_chunks(self, video_id: str, mp4_path: Path, subtitles: List[dict], metadata: dict):
"""Process subtitles and extract frames for each chunk"""
if len(subtitles) == 0:
print("No subtitles found for {}".format(video_id))
return []
# Process sentences with NLP for better chunking if available
chunks = []
# Extract sentences with fallback for missing NLP
sentences = []
if self.nlp is not None:
try:
# Join all subtitles and process as one document
full_text = " ".join([s["text"] for s in subtitles])
doc = self.nlp(full_text)
sentences = [str(sent) for sent in doc.sents]
except Exception as e:
print("Error in NLP processing: {}".format(e))
sentences = [s["text"] for s in subtitles]
else:
# Simple sentence splitting by punctuation
sentences = [s["text"] for s in subtitles]
# Create chunks
for subtitle in subtitles:
try:
# Extract frames for this segment
frame_paths = self._extract_frames(mp4_path, subtitle["start"], subtitle["end"])
# Create chunk
content = subtitle["text"]
# Skip empty content
if not content.strip():
continue
# Create a unique ID for this chunk
chunk_id = "{}_{}".format(video_id, int(subtitle["start"]))
# Create embeddings
text_embedding = None
if self.image_embedder is not None:
try:
text_embedding = self.image_embedder.encode_text(content)
except Exception as e:
print("Failed to embed text: {}".format(e))
if text_embedding is None:
# Fallback to text embedder
try:
text_embedding = self.text_embedder.encode(content)
except Exception:
# Last resort fallback
text_embedding = [0.0] * 384
# Create frame embeddings if possible
frame_embeddings = []
for frame in frame_paths:
try:
if self.image_embedder is not None:
embedding = self.image_embedder.encode(str(frame))
frame_embeddings.append(embedding)
except Exception as e:
print("Error embedding frame {}: {}".format(frame, e))
# Create a chunk
chunk = EmbeddedVideoChunk(
video_id=video_id,
document_id=chunk_id,
start_time=subtitle["start"],
end_time=subtitle["end"],
content=content,
embedding=text_embedding,
frame_paths=[str(p) for p in frame_paths],
frame_embeddings=frame_embeddings if frame_embeddings else [[0.0] * 768], # Add fallback empty vector
author_id=metadata.get("uploader", "unknown").replace(" ", "_").lower(),
author_full_name=metadata.get("uploader", "unknown")
)
chunks.append(chunk)
except Exception as e:
print("Error creating chunk for segment {}-{}: {}".format(
subtitle["start"], subtitle["end"], e))
return chunks
def _extract_frames(self, video_path: Path, start: float, end: float) -> List[Path]:
frame_dir = video_path.parent / "frames"
print("Extracting frames to: {}".format(frame_dir))
frame_dir.mkdir(exist_ok=True)
# Try to find ffmpeg in common locations on macOS
ffmpeg_locations = [
"ffmpeg", # if it's in PATH
"/opt/homebrew/bin/ffmpeg", # Homebrew on Apple Silicon
"/usr/local/bin/ffmpeg", # Homebrew on Intel Mac
"/usr/bin/ffmpeg", # System-installed
"/opt/local/bin/ffmpeg" # MacPorts
]
ffmpeg_cmd = None
for cmd in ffmpeg_locations:
try:
# Test if the command is available
result = subprocess.run([cmd, "-version"],
capture_output=True,
text=True,
check=False)
if result.returncode == 0:
ffmpeg_cmd = cmd
print("Found ffmpeg at: {}".format(ffmpeg_cmd))
break
except FileNotFoundError:
continue
if ffmpeg_cmd is None:
print("WARNING: ffmpeg not found in any location. Using fallback method.")
return self._manual_frame_extraction(video_path, [{"start": start, "end": end, "text": ""}])
# Continue with ffmpeg if found
cmd = [
ffmpeg_cmd,
"-y", # Overwrite output files without asking
"-ss", str(start),
"-to", str(end),
"-i", str(video_path),
"-vf", "fps=1",
str(frame_dir / "frame_%04d.jpg")
]
print("Running ffmpeg command: {}".format(" ".join(cmd)))
try:
result = subprocess.run(cmd, capture_output=True, check=True, text=True)
# Check for errors
if result.stderr:
print("FFmpeg output: {}".format(result.stderr))
except subprocess.CalledProcessError as e:
print("FFmpeg error: {}".format(e.stderr))
print("Falling back to manual frame extraction")
return self._manual_frame_extraction(video_path, [{"start": start, "end": end, "text": ""}])
frames = sorted(frame_dir.glob("*.jpg"))
print("Extracted {} frames".format(len(frames)))
return frames
def _store_chunks(self, chunks: List[EmbeddedVideoChunk]):
# Use a direct connection to Qdrant with the specified storage path
from qdrant_client import QdrantClient
qdrant_storage_path = "/Users/yufeizhen/Desktop/project/qdrant_storage"
# Ensure the storage directory exists
import os
os.makedirs(os.path.dirname(qdrant_storage_path), exist_ok=True)
# Create a direct connection to specified path
try:
client = QdrantClient(path=qdrant_storage_path)
print("Established direct connection to Qdrant storage at: {}".format(qdrant_storage_path))
except Exception as e:
print("Error connecting to Qdrant storage, falling back to connection singleton: {}".format(e))
# Fall back to the connection singleton if direct connection fails
from llm_engineering.infrastructure.db.qdrant import connection
client = connection
collection_name = "video_chunks"
if not chunks:
print("Warning: No chunks to store")
return
# Create points payload first
points = []
skipped_chunks = 0
print("Processing {} chunks for storage".format(len(chunks)))
for chunk in chunks:
try:
# Debug print chunk properties
print("Processing chunk with ID: {}, video_id: {}, start_time: {}".format(
chunk.document_id, chunk.video_id, chunk.start_time))
# Ensure embedding is exactly 512 dimensions for CLIP
embedding = chunk.embedding
if embedding is None:
print("Warning: Chunk has None embedding, skipping")
skipped_chunks += 1
continue
if not isinstance(embedding, list):
print("Warning: Embedding is not a list, converting")
try:
embedding = embedding.tolist()
except:
print("Failed to convert embedding to list, skipping chunk")
skipped_chunks += 1
continue
if len(embedding) != 512:
print("Embedding dimension mismatch: {} (should be 512)".format(len(embedding)))
# Try to pad or truncate
if len(embedding) < 512:
print("Padding embedding from {} to 512 dimensions".format(len(embedding)))
embedding = embedding + [0.0] * (512 - len(embedding))
else:
print("Truncating embedding from {} to 512 dimensions".format(len(embedding)))
embedding = embedding[:512]
# Create a unique ID based on video and timestamp
unique_str = "{}_{}".format(chunk.video_id, chunk.start_time)
hash_obj = hashlib.sha256(unique_str.encode()).hexdigest()
point_uuid = uuid.UUID(hash_obj[:32])
# Validate that chunk content is not empty
if not chunk.content or not chunk.content.strip():
print("Warning: Empty content in chunk, using placeholder")
content = "Empty content at timestamp {}".format(chunk.start_time)
else:
content = chunk.content
points.append(PointStruct(
id=str(point_uuid),
vector=embedding,
payload={
"text": content,
"start": chunk.start_time,
"end": chunk.end_time,
"video_id": chunk.video_id,
"metadata": {
"topics": [],
"sentence_hash": hashlib.md5(content.encode()).hexdigest()
}
}
))
except Exception as e:
print("Error processing chunk: {}".format(e))
skipped_chunks += 1
if skipped_chunks > 0:
print("Skipped {} chunks due to errors".format(skipped_chunks))
if not points:
print("No valid points to store after processing")
return
print("Prepared {} valid points for storage".format(len(points)))
try:
# Check if Qdrant client is properly initialized
if client is None:
raise ValueError("Qdrant client is None, check connection setup")
# Create collection if not exists
try:
if not client.collection_exists(collection_name):
print("Creating collection '{}' with 512-dimensional vectors".format(collection_name))
client.recreate_collection(
collection_name=collection_name,
vectors_config=VectorParams(
size=512,
distance=Distance.COSINE
)
)
else:
print("Collection '{}' already exists".format(collection_name))
except Exception as e:
print("Error checking/creating collection: {}".format(e))
raise
# Batch insert with progress and retry mechanism
batch_size = 64
max_retries = 3
for i in range(0, len(points), batch_size):
batch = points[i:i+batch_size]
retry_count = 0
while retry_count < max_retries:
try:
print("Storing batch {} of {} ({} points)".format(
i//batch_size + 1,
(len(points)-1)//batch_size + 1,
len(batch)
))
client.upsert(
collection_name=collection_name,
points=batch,
wait=True # Wait for the operation to complete
)
print("Successfully stored batch {} of {}".format(
i//batch_size + 1,
(len(points)-1)//batch_size + 1
))
break # Successfully stored, break the retry loop
except UnexpectedResponse as e:
# Specific handling for connection reset and other API errors
retry_count += 1
print("Qdrant API error: {} - retrying batch {} (attempt {}/{})...".format(
str(e), i//batch_size + 1, retry_count, max_retries))
import time
time.sleep(3 * retry_count) # Exponential backoff
except Exception as e:
if "Connection reset by peer" in str(e) and retry_count < max_retries - 1:
retry_count += 1
print("Connection reset, retrying batch {} (attempt {}/{})...".format(
i//batch_size + 1, retry_count, max_retries))
import time
time.sleep(3 * retry_count) # Exponential backoff
else:
# If it's not a connection reset or we've used all retries, re-raise
print("Fatal error storing batch: {}".format(str(e)))
raise
# Verify storage by counting points
try:
count = client.count(collection_name=collection_name)
print("Successfully stored {} chunks. Collection now contains {} points".format(
len(points), count.count))
except Exception as e:
print("Note: Stored points but couldn't verify count: {}".format(e))
except Exception as e:
print("Storage error: {}".format(str(e)))
import traceback
traceback.print_exc()
raise
def _load_processed_frames(self) -> dict:
if self.processed_frames_file.exists():
with open(self.processed_frames_file) as f:
return json.load(f)
return {}
def _save_processed_frames(self):
with open(self.processed_frames_file, "w") as f:
json.dump(self.processed_frames, f)