Commit
·
2d31940
0
Parent(s):
updated
Browse files- .gitignore +53 -0
- README.md +10 -0
- app.py +67 -0
- requirements.txt +10 -0
- src/for_streamlit/__init__.py +0 -0
- src/for_streamlit/spt.py +27 -0
- src/for_streamlit/texttospeech.py +58 -0
- src/for_streamlit/texttotext.py +52 -0
.gitignore
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# Virtual environment
|
7 |
+
venv/
|
8 |
+
.env/
|
9 |
+
*.env
|
10 |
+
|
11 |
+
# FastAPI
|
12 |
+
*.log
|
13 |
+
*.db
|
14 |
+
instance/
|
15 |
+
|
16 |
+
# VSCode settings
|
17 |
+
.vscode/
|
18 |
+
|
19 |
+
# PyCharm settings
|
20 |
+
.idea/
|
21 |
+
|
22 |
+
# MyPy and other Python checks
|
23 |
+
.mypy_cache/
|
24 |
+
.pytest_cache/
|
25 |
+
|
26 |
+
# Jupyter Notebooks
|
27 |
+
.ipynb_checkpoints/
|
28 |
+
|
29 |
+
# Docker
|
30 |
+
*.container
|
31 |
+
.dockerignore
|
32 |
+
docker-compose.override.yml
|
33 |
+
|
34 |
+
# Cache and temp files
|
35 |
+
*.swp
|
36 |
+
*.swo
|
37 |
+
|
38 |
+
# Ignore compiled Cython files
|
39 |
+
*.c
|
40 |
+
*.so
|
41 |
+
|
42 |
+
# Ignore test coverage reports
|
43 |
+
.coverage
|
44 |
+
htmlcov/
|
45 |
+
|
46 |
+
# Ignore build directories
|
47 |
+
build/
|
48 |
+
dist/
|
49 |
+
*.egg-info/
|
50 |
+
|
51 |
+
# Ignore database files
|
52 |
+
*.sqlite3
|
53 |
+
*.db
|
README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Osama
|
3 |
+
emoji: 🕵️
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
9 |
+
|
10 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from src.for_streamlit.spt import SpeechToText
|
3 |
+
from src.for_streamlit.texttotext import ConversationHandler
|
4 |
+
from src.for_streamlit.texttospeech import TextToSpeech
|
5 |
+
from streamlit_mic_recorder import mic_recorder
|
6 |
+
|
7 |
+
st.title("🎙️ Voice to Voice ")
|
8 |
+
st.write("Click the button below to start recording.")
|
9 |
+
|
10 |
+
# Cache the models to prevent reloading
|
11 |
+
@st.cache_resource
|
12 |
+
def load_speech_to_text():
|
13 |
+
return SpeechToText()
|
14 |
+
|
15 |
+
@st.cache_resource
|
16 |
+
def load_conversation_handler():
|
17 |
+
return ConversationHandler()
|
18 |
+
|
19 |
+
@st.cache_resource
|
20 |
+
def load_text_to_speech():
|
21 |
+
return TextToSpeech()
|
22 |
+
|
23 |
+
# Load models once
|
24 |
+
speech_to_text = load_speech_to_text()
|
25 |
+
conversation_handler = load_conversation_handler()
|
26 |
+
text_to_speech = load_text_to_speech()
|
27 |
+
|
28 |
+
# Capture microphone input
|
29 |
+
audio_data = mic_recorder()
|
30 |
+
|
31 |
+
def main():
|
32 |
+
if audio_data and 'bytes' in audio_data:
|
33 |
+
audio_bytes = audio_data['bytes']
|
34 |
+
|
35 |
+
# Play recorded audio
|
36 |
+
st.audio(audio_bytes, format="audio/wav")
|
37 |
+
st.write("Transcribing...")
|
38 |
+
|
39 |
+
# Transcribe the audio
|
40 |
+
transcription = speech_to_text.record_and_transcribe(audio_bytes)
|
41 |
+
if transcription:
|
42 |
+
st.success("Transcription:")
|
43 |
+
st.write(transcription)
|
44 |
+
|
45 |
+
st.write("Generating response...")
|
46 |
+
response = conversation_handler.give_response(transcription)
|
47 |
+
|
48 |
+
if response:
|
49 |
+
st.success("Response:")
|
50 |
+
st.write(response.content)
|
51 |
+
|
52 |
+
# Convert response text to speech
|
53 |
+
audio_buffer = text_to_speech.synthesize(response.content)
|
54 |
+
if audio_buffer:
|
55 |
+
st.success("Generated audio:")
|
56 |
+
st.audio(audio_buffer, format="audio/wav")
|
57 |
+
else:
|
58 |
+
st.error("No audio available.")
|
59 |
+
else:
|
60 |
+
st.error("No response available.")
|
61 |
+
else:
|
62 |
+
st.error("No transcription available.")
|
63 |
+
else:
|
64 |
+
st.warning("Please record some audio.")
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
elevenlabs
|
2 |
+
groq
|
3 |
+
langchain
|
4 |
+
langchain-core
|
5 |
+
langchain-groq
|
6 |
+
python-dotenv
|
7 |
+
Requests
|
8 |
+
streamlit
|
9 |
+
langchain-community
|
10 |
+
streamlit-mic-recorder
|
src/for_streamlit/__init__.py
ADDED
File without changes
|
src/for_streamlit/spt.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import wave
|
2 |
+
import io
|
3 |
+
from groq import Groq
|
4 |
+
|
5 |
+
class SpeechToText:
|
6 |
+
def __init__(self):
|
7 |
+
self.client = Groq()
|
8 |
+
|
9 |
+
def record_and_transcribe(self, audio_bytes):
|
10 |
+
wav_buffer = io.BytesIO(audio_bytes)
|
11 |
+
|
12 |
+
try:
|
13 |
+
transcription = self.client.audio.transcriptions.create(
|
14 |
+
file=("audio.wav", wav_buffer),
|
15 |
+
model="whisper-large-v3-turbo"
|
16 |
+
)
|
17 |
+
return transcription.text
|
18 |
+
|
19 |
+
except Exception as e:
|
20 |
+
print(f"Error transcribing: {e}")
|
21 |
+
return str(e)
|
22 |
+
finally:
|
23 |
+
wav_buffer.close()
|
24 |
+
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
print("This script is designed to be used as a module, not run directly.")
|
src/for_streamlit/texttospeech.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from elevenlabs import ElevenLabs,Voice,VoiceSettings
|
3 |
+
from typing import Optional
|
4 |
+
from elevenlabs import play
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
import io
|
8 |
+
load_dotenv()
|
9 |
+
print(os.getenv("ELEVENLABS_API_KEY"))
|
10 |
+
class TextToSpeech:
|
11 |
+
REQUIRED_ENV_VARS=["ELEVENLABS_API_KEY","ELEVENLABS_VOICE_ID"]
|
12 |
+
def __init__(self):
|
13 |
+
"""Initialize"""
|
14 |
+
self._validate_env_vars()
|
15 |
+
self._client: Optional[ElevenLabs] = None
|
16 |
+
|
17 |
+
def _validate_env_vars(self) -> None:
|
18 |
+
"""validate that all the environment variables are set"""
|
19 |
+
missing_vars=[var for var in self.REQUIRED_ENV_VARS if not os.getenv(var)]
|
20 |
+
if missing_vars:
|
21 |
+
raise ValueError(f"Missing required environment variables: {', '.join(missing_vars)}")
|
22 |
+
|
23 |
+
@property
|
24 |
+
def client(self) -> Optional[ElevenLabs]:
|
25 |
+
"""Get or create a client instance"""
|
26 |
+
if self._client is None:
|
27 |
+
self._client = ElevenLabs(api_key=os.getenv("ELEVENLABS_API_KEY"))
|
28 |
+
return self._client
|
29 |
+
def synthesize(self,text:str)->bytes:
|
30 |
+
"""Convert text to speech"""
|
31 |
+
if not text.strip():
|
32 |
+
raise ValueError("Input text cannot be empty")
|
33 |
+
if len(text)>5000:
|
34 |
+
raise ValueError("Input text cannot exceed 5000 characters")
|
35 |
+
try:
|
36 |
+
audio_generator =self.client.generate(
|
37 |
+
text=text,
|
38 |
+
voice=Voice(
|
39 |
+
voice_id=os.getenv("ELEVENLABS_VOICE_ID"),
|
40 |
+
settings=VoiceSettings(stability=0.5, similarity_boost=0.5),
|
41 |
+
),
|
42 |
+
model=os.getenv("TTS_MODEL_NAME"),
|
43 |
+
|
44 |
+
)
|
45 |
+
audio_bytes = b"".join(audio_generator)
|
46 |
+
return audio_bytes
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Error synthesizing text: {str(e)}")
|
49 |
+
return None
|
50 |
+
|
51 |
+
|
52 |
+
# if __name__=="__main__":
|
53 |
+
# ts=TextToSpeech()
|
54 |
+
# import asyncio
|
55 |
+
# async def main():
|
56 |
+
# audio_buffer = await ts.synthesize("Yeah, another example is decision trees. You're from Nepal, right, Ilam?")
|
57 |
+
# play(audio_buffer)
|
58 |
+
# asyncio.run(main())
|
src/for_streamlit/texttotext.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder, HumanMessagePromptTemplate
|
2 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
3 |
+
from langchain_groq import ChatGroq
|
4 |
+
from typing import List
|
5 |
+
import os
|
6 |
+
from services.prompts import ASSISTANT_PROMPT
|
7 |
+
from langchain.memory import ConversationSummaryMemory
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
load_dotenv()
|
10 |
+
os.environ["GROQ_API_KEY"]=os.getenv("GROQ_API_KEY")
|
11 |
+
|
12 |
+
class ConversationHandler:
|
13 |
+
def __init__(self, model_name="llama-3.3-70b-versatile", temperature=0.7):
|
14 |
+
self.chat_model = ChatGroq(
|
15 |
+
model_name=model_name,
|
16 |
+
temperature=temperature
|
17 |
+
)
|
18 |
+
self.prompt = ChatPromptTemplate.from_messages([
|
19 |
+
("system", ASSISTANT_PROMPT)])
|
20 |
+
self.memory=ConversationSummaryMemory(
|
21 |
+
llm=self.chat_model,
|
22 |
+
max_token_limit=2000,
|
23 |
+
return_messages=True,
|
24 |
+
memory_key="chat_history"
|
25 |
+
)
|
26 |
+
|
27 |
+
def give_response(self,user_input):
|
28 |
+
chain= self.prompt|self.chat_model
|
29 |
+
memory_variables = self.memory.load_memory_variables({})
|
30 |
+
response=chain.invoke(
|
31 |
+
{
|
32 |
+
"user_query": user_input,
|
33 |
+
"chat_history": memory_variables["chat_history"]
|
34 |
+
|
35 |
+
|
36 |
+
}
|
37 |
+
)
|
38 |
+
print(response.content)
|
39 |
+
self.memory.save_context(
|
40 |
+
{"input": user_input},
|
41 |
+
{"output": response.content}
|
42 |
+
)
|
43 |
+
return response
|
44 |
+
def summarize_conversation(self) -> str:
|
45 |
+
memory_variables = self.memory.load_memory_variables({})
|
46 |
+
return self.memory.predict_new_summary(
|
47 |
+
messages=memory_variables["chat_history"],
|
48 |
+
existing_summary=""
|
49 |
+
)
|
50 |
+
|
51 |
+
def clear_memory(self):
|
52 |
+
self.memory.clear()
|