from langchain_huggingface import HuggingFaceEmbeddings | |
# embedding_instance = HuggingFaceEmbeddings( | |
# model_name="all-MiniLM-L6-v2", | |
# model_kwargs={"device": "cpu"}, | |
# ) | |
# def all_minilm_l6_v2(): | |
# """ | |
# Return the embedding instance. | |
# """ | |
# return embedding_instance | |
# from sentence_transformers import SentenceTransformer | |
# from langchain.embeddings import HuggingFaceEmbeddings | |
# # Load the sentence-transformers model directly | |
# model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") | |
# # Wrap it in LangChain HuggingFaceEmbeddings by passing the model instance | |
# embedding_instance = HuggingFaceEmbeddings(model=model) | |
# def all_minilm_l6_v2(): | |
# """ | |
# Return the embedding instance. | |
# """ | |
# return embedding_instance | |
from langchain_huggingface import HuggingFaceEmbeddings | |
def all_minilm_l6_v2(): | |
model_kwargs = {"device":"cpu"} | |
encode_kwargs = {"normalize_embeddings": True} | |
all_minilm_object = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs=model_kwargs, | |
encode_kwargs=encode_kwargs | |
) | |
return all_minilm_object | |