File size: 2,305 Bytes
7e55c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#importing dependencies
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.storage import LocalFileStore
import time
import torch
import streamlit as st
import tkinter as tk
from tkinter import filedialog
from pathlib import Path

def select_folder():
   root = tk.Tk()
   root.withdraw()
   folder_path = filedialog.askdirectory(master=root)
   root.destroy()
   return folder_path

# check if CUDA is available and set the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)

store = LocalFileStore("../cache/")
#loading data
root = tk.Tk()
root.withdraw()

# Make folder picker dialog appear on top of other windows
root.wm_attributes('-topmost', 1)

# Folder picker button
st.title('Pick Pdfs Folder')
st.write('Please select a folder:')

dirname = ""
pdfs_folder = ""
clicked = st.button('Browse')
if clicked:
    dirname = st.text_input('Selected folder:', filedialog.askdirectory(master=root))
    pdfs_folder = Path(dirname)
if pdfs_folder:
   st.write("Selected folder path:", pdfs_folder)
   loader = PyPDFDirectoryLoader(pdfs_folder)
   documents = loader.load()
   st.write(len(documents))

   #splitting
   
   splitter = RecursiveCharacterTextSplitter(chunk_size = 1000, chunk_overlap = 10)
   text_chunks = splitter.split_documents(documents)
   st.write(len(text_chunks))
   
   #loading HuggingFaceBGE embeddings
   model_name = "BAAI/bge-small-en"
   st.write("Loading tokenizer model", model_name)
   model_kwargs = {"device": device}
   encode_kwargs = {"normalize_embeddings": True}
   embeddings = HuggingFaceBgeEmbeddings(
       model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs
   )
   
   st.write('Embeddings loaded!')
   
   # creating Documents vector database.
   
   t1 = time.time()
   persist_directory = 'dbname'
   vectordb = Chroma.from_documents(
       documents = text_chunks,
       embedding = embeddings,
       collection_metadata = {"hnsw:space": "cosine"},
       persist_directory = persist_directory
   )
   t2 = time.time()
   st.write('Time taken for building db : ', (t2 - t1))