Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
-
import torch
|
4 |
|
5 |
# Create a class for the session state
|
6 |
class SessionState:
|
@@ -22,37 +21,32 @@ with st.spinner('Wait for it... the model is loading'):
|
|
22 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
|
25 |
-
# Create a
|
26 |
-
input_text = st.
|
27 |
|
28 |
# Check if the user has entered a message
|
29 |
if input_text:
|
30 |
# Add the user's message to the conversation history
|
31 |
-
session_state.conversation_history.append(
|
32 |
|
33 |
# Create conversation history string
|
34 |
-
history_string = "\n".join(
|
35 |
|
36 |
# Tokenize the input text and history
|
37 |
-
inputs = tokenizer.encode_plus(history_string, return_tensors="pt")
|
38 |
-
inputs["input_ids"] = torch.cat([inputs["input_ids"], torch.tensor([[tokenizer.sep_token_id]])], dim=-1)
|
39 |
-
inputs["attention_mask"] = torch.cat([inputs["attention_mask"], torch.tensor([[1]])], dim=-1)
|
40 |
-
inputs = tokenizer.encode_plus(input_text, return_tensors="pt", add_special_tokens=False)
|
41 |
-
inputs["input_ids"] = torch.cat([inputs["input_ids"], inputs["input_ids"]], dim=-1)
|
42 |
-
inputs["attention_mask"] = torch.cat([inputs["attention_mask"], inputs["attention_mask"]], dim=-1)
|
43 |
|
44 |
# Generate the response from the model with additional parameters
|
45 |
-
outputs = model.generate(**inputs, max_length=max_length,
|
46 |
|
47 |
# Decode the response
|
48 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
49 |
|
50 |
# Add the model's response to the conversation history
|
51 |
-
session_state.conversation_history.append(
|
52 |
-
|
53 |
-
# Display the conversation history
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
st.
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
3 |
|
4 |
# Create a class for the session state
|
5 |
class SessionState:
|
|
|
21 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
|
24 |
+
# Create a text input for the user
|
25 |
+
input_text = st.text_input("Enter your message:")
|
26 |
|
27 |
# Check if the user has entered a message
|
28 |
if input_text:
|
29 |
# Add the user's message to the conversation history
|
30 |
+
session_state.conversation_history.append(input_text)
|
31 |
|
32 |
# Create conversation history string
|
33 |
+
history_string = "\n".join(session_state.conversation_history)
|
34 |
|
35 |
# Tokenize the input text and history
|
36 |
+
inputs = tokenizer.encode_plus(history_string, input_text, return_tensors="pt")
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Generate the response from the model with additional parameters
|
39 |
+
outputs = model.generate(**inputs, max_length=max_length, temperature=temperature)
|
40 |
|
41 |
# Decode the response
|
42 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
43 |
|
44 |
# Add the model's response to the conversation history
|
45 |
+
session_state.conversation_history.append(response)
|
46 |
+
|
47 |
+
# Display the conversation history
|
48 |
+
st.write("Conversation History:")
|
49 |
+
for i in range(0, len(session_state.conversation_history), 2):
|
50 |
+
st.write("User: " + session_state.conversation_history[i])
|
51 |
+
if i+1 < len(session_state.conversation_history):
|
52 |
+
st.write("Assistant: " + session_state.conversation_history[i+1])
|