Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,52 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
-
|
4 |
-
# Create a class for the session state
|
5 |
-
class SessionState:
|
6 |
-
def __init__(self):
|
7 |
-
self.conversation_history = []
|
8 |
-
|
9 |
-
# Initialize the session state
|
10 |
-
session_state = SessionState()
|
11 |
-
|
12 |
-
# Sidebar for setting parameters
|
13 |
-
st.sidebar.title("Model Parameters")
|
14 |
-
# You can add more parameters here as needed
|
15 |
-
max_length = st.sidebar.slider("Max Length", 10, 100, 50)
|
16 |
-
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.7)
|
17 |
-
|
18 |
-
# Load the model and tokenizer with a loading message
|
19 |
-
with st.spinner('Wait for it... the model is loading'):
|
20 |
-
model_name = "facebook/blenderbot-400M-distill"
|
21 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
-
|
24 |
-
# Create a chat input for the user
|
25 |
-
input_text = st.chat_input("Enter your message:")
|
26 |
-
|
27 |
-
# Check if the user has entered a message
|
28 |
-
if input_text:
|
29 |
-
# Add the user's message to the conversation history
|
30 |
-
session_state.conversation_history.append(("User", input_text))
|
31 |
-
|
32 |
-
# Create conversation history string
|
33 |
-
history_string = "\n".join(message for role, message in session_state.conversation_history)
|
34 |
-
|
35 |
-
# Tokenize the input text and history
|
36 |
-
inputs = tokenizer.encode_plus(history_string, input_text, return_tensors="pt")
|
37 |
-
|
38 |
-
# Generate the response from the model with additional parameters
|
39 |
-
outputs = model.generate(**inputs, max_length=max_length, do_sample=True ,temperature=temperature)
|
40 |
-
|
41 |
-
# Decode the response
|
42 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
43 |
-
|
44 |
-
# Add the model's response to the conversation history
|
45 |
-
session_state.conversation_history.append(("Assistant", response))
|
46 |
-
|
47 |
-
# Display the conversation history using st.chat
|
48 |
-
for role, message in session_state.conversation_history:
|
49 |
-
if role == "User":
|
50 |
-
st.
|
51 |
-
else:
|
52 |
-
st.
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
+
|
4 |
+
# Create a class for the session state
|
5 |
+
class SessionState:
|
6 |
+
def __init__(self):
|
7 |
+
self.conversation_history = []
|
8 |
+
|
9 |
+
# Initialize the session state
|
10 |
+
session_state = SessionState()
|
11 |
+
|
12 |
+
# Sidebar for setting parameters
|
13 |
+
st.sidebar.title("Model Parameters")
|
14 |
+
# You can add more parameters here as needed
|
15 |
+
max_length = st.sidebar.slider("Max Length", 10, 100, 50)
|
16 |
+
temperature = st.sidebar.slider("Temperature", 0.0, 1.0, 0.7)
|
17 |
+
|
18 |
+
# Load the model and tokenizer with a loading message
|
19 |
+
with st.spinner('Wait for it... the model is loading'):
|
20 |
+
model_name = "facebook/blenderbot-400M-distill"
|
21 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
+
|
24 |
+
# Create a chat input for the user
|
25 |
+
input_text = st.chat_input("Enter your message:")
|
26 |
+
|
27 |
+
# Check if the user has entered a message
|
28 |
+
if input_text:
|
29 |
+
# Add the user's message to the conversation history
|
30 |
+
session_state.conversation_history.append(("User", input_text))
|
31 |
+
|
32 |
+
# Create conversation history string
|
33 |
+
history_string = "\n".join(message for role, message in session_state.conversation_history)
|
34 |
+
|
35 |
+
# Tokenize the input text and history
|
36 |
+
inputs = tokenizer.encode_plus(history_string, input_text, return_tensors="pt")
|
37 |
+
|
38 |
+
# Generate the response from the model with additional parameters
|
39 |
+
outputs = model.generate(**inputs, max_length=max_length, do_sample=True ,temperature=temperature)
|
40 |
+
|
41 |
+
# Decode the response
|
42 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
|
43 |
+
|
44 |
+
# Add the model's response to the conversation history
|
45 |
+
session_state.conversation_history.append(("Assistant", response))
|
46 |
+
|
47 |
+
# Display the conversation history using st.chat
|
48 |
+
for role, message in session_state.conversation_history:
|
49 |
+
if role == "User":
|
50 |
+
st.chat_message(message, is_user=True)
|
51 |
+
else:
|
52 |
+
st.chat_message(message, is_user=False)
|