|
import sys |
|
from dataclasses import dataclass, field |
|
from queue import Queue |
|
|
|
import numpy as np |
|
import speech_recognition as sr |
|
|
|
|
|
def get_microphone(default_microphone: str | None = "pulse", sample_rate: int = 16000) -> sr.Microphone: |
|
"""Get the specified system microphone if available.""" |
|
|
|
|
|
if "linux" in sys.platform: |
|
mic_name = default_microphone |
|
if not mic_name or mic_name == "list": |
|
mic_names = "\n".join(f"- {n}" for n in sr.Microphone.list_microphone_names()) |
|
err_msg = f"No microphone selected. Available microphone devices are:\n{mic_names}" |
|
raise ValueError(err_msg) |
|
else: |
|
for index, name in enumerate(sr.Microphone.list_microphone_names()): |
|
if mic_name in name: |
|
return sr.Microphone(sample_rate=sample_rate, device_index=index) |
|
return sr.Microphone(sample_rate=sample_rate) |
|
|
|
|
|
def get_speech_recognizer(energy_threshold: int = 300) -> sr.Recognizer: |
|
"""Set up a speech recognizer with a custom energy threshold.""" |
|
|
|
|
|
speech_recognizer = sr.Recognizer() |
|
speech_recognizer.energy_threshold = energy_threshold |
|
|
|
|
|
speech_recognizer.dynamic_energy_threshold = False |
|
return speech_recognizer |
|
|
|
|
|
def to_audio_array(audio_data: bytes) -> np.ndarray: |
|
""" |
|
Convert in-ram buffer to something the model can use directly without needing a temp file. |
|
|
|
Convert data from 16 bit wide integers to floating point with a width of 32 bits. |
|
Clamp the audio stream frequency to a PCM wavelength compatible default of 32768hz max. |
|
""" |
|
audio_np = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0 |
|
return audio_np |
|
|
|
|
|
def get_all_audio_queue(data_queue: Queue) -> bytes: |
|
"""Returns all audio in the queue.""" |
|
audio_data = b"".join(data_queue.queue) |
|
data_queue.queue.clear() |
|
return audio_data |
|
|
|
|
|
@dataclass |
|
class AudioChunk: |
|
start_time: float |
|
end_time: float | None = None |
|
audio_array: np.ndarray = field(default_factory=lambda: np.array([])) |
|
|
|
@property |
|
def duration(self) -> float | None: |
|
return None if self.end_time is None else self.end_time - self.start_time |
|
|
|
@property |
|
def is_complete(self) -> bool: |
|
return (self.end_time is not None) and (self.audio_array.size > 0) |
|
|
|
def update_array(self, new_audio: np.ndarray) -> None: |
|
self.audio_array = np.concatenate((self.audio_array, new_audio)) |
|
|