|
from PIL import Image |
|
import requests |
|
from transformers import Blip2Processor, Blip2ForConditionalGeneration |
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") |
|
model = Blip2ForConditionalGeneration.from_pretrained( |
|
"Salesforce/blip2-opt-2.7b", device_map={"": 0}, torch_dtype=torch.float16 |
|
) |
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
inputs = processor(images=image, return_tensors="pt").to(device, torch.float16) |
|
|
|
generated_ids = model.generate(**inputs) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
print(generated_text) |
|
|
|
prompt = "Question: how many cats are there? Answer:" |
|
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device="cuda", dtype=torch.float16) |
|
|
|
generated_ids = model.generate(**inputs) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
print(generated_text) |