|
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration |
|
import torch |
|
from PIL import Image |
|
|
|
|
|
|
|
class InstructBlip: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def __init__(self, model_pretrain:str = "Salesforce/instructblip-vicuna-7b"): |
|
self.model = InstructBlipForConditionalGeneration.from_pretrained(model_pretrain |
|
, device_map={"": 0}, torch_dtype=torch.float16) |
|
self.processor = InstructBlipProcessor.from_pretrained(model_pretrain) |
|
|
|
def image_captioning(self, image: Image.Image) -> str: |
|
prompt = "What are the features of this picture?" |
|
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device) |
|
|
|
outputs = self.model.generate( |
|
**inputs, |
|
do_sample=False, |
|
num_beams=5, |
|
max_length=256, |
|
min_length=1, |
|
top_p=0.9, |
|
repetition_penalty=1.5, |
|
length_penalty=1.0, |
|
temperature=1, |
|
) |
|
generated_text = self.processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() |
|
|
|
return generated_text |
|
|
|
def visual_question_answering(self, image: Image.Image, prompt: str) -> str: |
|
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(device) |
|
|
|
outputs = self.model.generate( |
|
**inputs, |
|
do_sample=False, |
|
num_beams=5, |
|
max_length=256, |
|
min_length=1, |
|
top_p=0.9, |
|
repetition_penalty=1.5, |
|
length_penalty=1.0, |
|
temperature=1, |
|
) |
|
generated_text = self.processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() |
|
|
|
return generated_text |
|
|
|
|
|
|
|
|
|
|