import gradio as gr import torch import io from PIL import Image from transformers import ( AutoImageProcessor, AutoTokenizer, AutoModelForCausalLM, ) import numpy as np model_root = "qihoo360/fg-clip-base" model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True) device = model.device tokenizer = AutoTokenizer.from_pretrained(model_root) image_processor = AutoImageProcessor.from_pretrained(model_root) import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def Get_Densefeature(image, candidate_labels): """ Takes an image and a comma-separated string of candidate labels, and returns the classification scores. """ candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",") if label !=""] # print(candidate_labels) image_size=224 image = image.convert("RGB") image = image.resize((image_size,image_size)) image_input = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(device) with torch.no_grad(): dense_image_feature = model.get_image_dense_features(image_input) captions = [candidate_labels[0]] caption_input = torch.tensor(tokenizer(captions, max_length=77, padding="max_length", truncation=True).input_ids, dtype=torch.long, device=device) text_feature = model.get_text_features(caption_input,walk_short_pos=True) text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True) dense_image_feature = dense_image_feature / dense_image_feature.norm(p=2, dim=-1, keepdim=True) similarity = dense_image_feature.squeeze() @ text_feature.squeeze().T similarity = similarity.cpu().numpy() patch_size = int(math.sqrt(similarity.shape[0])) original_shape = (patch_size, patch_size) show_image = similarity.reshape(original_shape) fig = plt.figure(figsize=(6, 6)) plt.imshow(show_image) plt.title('similarity Visualization') plt.axis('off') buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) plt.close(fig) pil_img = Image.open(buf) # buf.close() return pil_img with gr.Blocks() as demo: gr.Markdown("# FG-CLIP Densefeature") gr.Markdown( "This app uses the FG-CLIP model (qihoo360/fg-clip-base) for Densefeature show on CPU :" ) gr.Markdown( "⚠️ (Run DenseFeature) only support one class" ) with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil") text_input = gr.Textbox(label="Input a label") dfs_button = gr.Button("Run Densefeature", visible=True) with gr.Column(): dfs_output = gr.Image(label="Similarity Visualization", type="pil") examples = [ ["./cat_dfclor.jpg", "white cat,"], ] gr.Examples( examples=examples, inputs=[image_input, text_input], ) dfs_button.click(fn=Get_Densefeature, inputs=[image_input, text_input], outputs=dfs_output) demo.launch()