qingshan777 commited on
Commit
703c654
·
verified ·
1 Parent(s): 403d070

Upload 4 files

Browse files
Files changed (5) hide show
  1. .gitattributes +1 -0
  2. app.py +153 -0
  3. cat.jpg +3 -0
  4. cat_dfclor.jpg +0 -0
  5. requirements.txt +9 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ cat.jpg filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ import torch
4
+ import io
5
+ from PIL import Image
6
+ from transformers import (
7
+ AutoImageProcessor,
8
+ AutoTokenizer,
9
+ AutoModelForCausalLM,
10
+ )
11
+ import numpy as np
12
+ model_root = "qihoo360/fg-clip-base"
13
+
14
+ model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True)
15
+ device = model.device
16
+ tokenizer = AutoTokenizer.from_pretrained(model_root)
17
+ image_processor = AutoImageProcessor.from_pretrained(model_root)
18
+
19
+ import math
20
+ import matplotlib
21
+ matplotlib.use('Agg')
22
+ import matplotlib.pyplot as plt
23
+
24
+ def postprocess_result(probs, labels):
25
+ pro_output = {labels[i]: probs[i] for i in range(len(labels))}
26
+
27
+ return pro_output
28
+
29
+
30
+ def Retrieval(image, candidate_labels):
31
+ """
32
+ Takes an image and a comma-separated string of candidate labels,
33
+ and returns the classification scores.
34
+ """
35
+ image_size=224
36
+ image = image.convert("RGB")
37
+ image = image.resize((image_size,image_size))
38
+ image_input = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(device)
39
+ walk_short_pos = True
40
+
41
+ caption_input = torch.tensor(tokenizer(candidate_labels, max_length=77, padding="max_length", truncation=True).input_ids, dtype=torch.long, device=device)
42
+
43
+ with torch.no_grad():
44
+ image_feature = model.get_image_features(image_input)
45
+ text_feature = model.get_text_features(caption_input,walk_short_pos=walk_short_pos)
46
+ image_feature = image_feature / image_feature.norm(p=2, dim=-1, keepdim=True)
47
+ text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)
48
+
49
+ logits_per_image = image_feature @ text_feature.T
50
+ logits_per_image = model.logit_scale.exp() * logits_per_image
51
+ probs = logits_per_image.softmax(dim=1)
52
+ results = probs[0].tolist()
53
+ return results
54
+
55
+
56
+ def Get_Densefeature(image, candidate_labels):
57
+ """
58
+ Takes an image and a comma-separated string of candidate labels,
59
+ and returns the classification scores.
60
+ """
61
+ candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",") if label !=""]
62
+ # print(candidate_labels)
63
+
64
+ image_size=224
65
+ image = image.convert("RGB")
66
+ image = image.resize((image_size,image_size))
67
+ image_input = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(device)
68
+
69
+ with torch.no_grad():
70
+ dense_image_feature = model.get_image_dense_features(image_input)
71
+ captions = candidate_labels
72
+ caption_input = torch.tensor(tokenizer(captions, max_length=77, padding="max_length", truncation=True).input_ids, dtype=torch.long, device=device)
73
+ text_feature = model.get_text_features(caption_input,walk_short_pos=True)
74
+ text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)
75
+ dense_image_feature = dense_image_feature / dense_image_feature.norm(p=2, dim=-1, keepdim=True)
76
+
77
+ similarity = dense_image_feature.squeeze() @ text_feature.squeeze().T
78
+ similarity = similarity.cpu().numpy()
79
+ patch_size = int(math.sqrt(similarity.shape[0]))
80
+
81
+
82
+ original_shape = (patch_size, patch_size)
83
+ show_image = similarity.reshape(original_shape)
84
+ # normalized = (show_image - show_image.min()) / (show_image.max() - show_image.min())
85
+
86
+ # def viridis_colormap(x):
87
+
88
+ # r = np.clip(1.1746 * x - 0.1776, 0, 1)
89
+ # g = np.clip(2.0 * x - 0.7, 0, 1)
90
+ # b = np.clip(-2.0 * x + 1.7, 0, 1)
91
+ # return np.stack([r, g, b], axis=-1)
92
+
93
+ # color_mapped = viridis_colormap(normalized)
94
+
95
+ # color_mapped_uint8 = (color_mapped * 255).astype(np.uint8)
96
+
97
+ # pil_img = Image.fromarray(color_mapped_uint8)
98
+ # pil_img = pil_img.resize((512,512))
99
+
100
+ fig = plt.figure(figsize=(6, 6))
101
+ plt.imshow(show_image)
102
+ plt.title('similarity Visualization')
103
+ plt.axis('off')
104
+
105
+ buf = io.BytesIO()
106
+ plt.savefig(buf, format='png')
107
+ buf.seek(0)
108
+ plt.close(fig)
109
+
110
+ pil_img = Image.open(buf)
111
+ # buf.close()
112
+ return pil_img
113
+
114
+
115
+
116
+
117
+ def infer(image, candidate_labels):
118
+ candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",") if label !=""]
119
+ fg_probs = Retrieval(image, candidate_labels)
120
+ return postprocess_result(fg_probs,candidate_labels)
121
+
122
+
123
+ with gr.Blocks() as demo:
124
+ gr.Markdown("# FG-CLIP Retrieval")
125
+ gr.Markdown(
126
+ "This app uses the FG-CLIP model (qihoo360/fg-clip-base) for retrieval on CPU :"
127
+ )
128
+ with gr.Row():
129
+ with gr.Column():
130
+ image_input = gr.Image(type="pil")
131
+ text_input = gr.Textbox(label="Input a list of labels (comma seperated)")
132
+ run_button = gr.Button("Run Retrieval", visible=True)
133
+ dfs_button = gr.Button("Run Densefeature", visible=True)
134
+ with gr.Column():
135
+ fg_output = gr.Label(label="FG-CLIP Output", num_top_classes=11)
136
+ dfs_output = gr.Image(label="Similarity Visualization", type="pil")
137
+
138
+ examples = [
139
+ # ["./baklava.jpg", "dessert on a plate, a serving of baklava, a plate and spoon"],
140
+ # ["./dog.jpg", "A light brown wood stool, A bucket with a body made of dark brown plastic, A black velvet back cover for a cellular telephone, A green ball with a perforated pattern, A light blue plastic helmet made of plastic, A grey slipper made of wool, A newspaper with white and black perforated printed on a paper texture, A blue dog with a white colored head, A yellow sponge with a dark green rough surface, A book with white, dark orange and brown pages made of paper, A black ceramic scarf with a body made of fabric."],
141
+ ["./Landscape.jpg", "red grass, yellow grass, green grass"],
142
+ ["./cat.jpg", "two sleeping cats, two cats playing, three cats laying down"],
143
+ ["./cat_dfclor.jpg", "white cat,"],
144
+ ]
145
+ gr.Examples(
146
+ examples=examples,
147
+ inputs=[image_input, text_input],
148
+ # outputs=fg_output,
149
+ # fn=infer,
150
+ )
151
+ run_button.click(fn=infer, inputs=[image_input, text_input], outputs=fg_output)
152
+ dfs_button.click(fn=Get_Densefeature, inputs=[image_input, text_input], outputs=dfs_output)
153
+ demo.launch()
cat.jpg ADDED

Git LFS Details

  • SHA256: dea9e7ef97386345f7cff32f9055da4982da5471c48d575146c796ab4563b04e
  • Pointer size: 131 Bytes
  • Size of remote file: 173 kB
cat_dfclor.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ gradio
3
+ accelerate
4
+ transformers==4.41.0
5
+ pillow
6
+ einops
7
+ torchvision
8
+ matplotlib
9
+ numpy