qingshan777 commited on
Commit
d9d27f1
·
verified ·
1 Parent(s): 4cfabc8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -71
app.py CHANGED
@@ -53,65 +53,6 @@ def Retrieval(image, candidate_labels):
53
  return results
54
 
55
 
56
- def Get_Densefeature(image, candidate_labels):
57
- """
58
- Takes an image and a comma-separated string of candidate labels,
59
- and returns the classification scores.
60
- """
61
- candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",") if label !=""]
62
- # print(candidate_labels)
63
-
64
- image_size=224
65
- image = image.convert("RGB")
66
- image = image.resize((image_size,image_size))
67
- image_input = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(device)
68
-
69
- with torch.no_grad():
70
- dense_image_feature = model.get_image_dense_features(image_input)
71
- captions = [candidate_labels[0]]
72
- caption_input = torch.tensor(tokenizer(captions, max_length=77, padding="max_length", truncation=True).input_ids, dtype=torch.long, device=device)
73
- text_feature = model.get_text_features(caption_input,walk_short_pos=True)
74
- text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)
75
- dense_image_feature = dense_image_feature / dense_image_feature.norm(p=2, dim=-1, keepdim=True)
76
-
77
- similarity = dense_image_feature.squeeze() @ text_feature.squeeze().T
78
- similarity = similarity.cpu().numpy()
79
- patch_size = int(math.sqrt(similarity.shape[0]))
80
-
81
-
82
- original_shape = (patch_size, patch_size)
83
- show_image = similarity.reshape(original_shape)
84
- # normalized = (show_image - show_image.min()) / (show_image.max() - show_image.min())
85
-
86
- # def viridis_colormap(x):
87
-
88
- # r = np.clip(1.1746 * x - 0.1776, 0, 1)
89
- # g = np.clip(2.0 * x - 0.7, 0, 1)
90
- # b = np.clip(-2.0 * x + 1.7, 0, 1)
91
- # return np.stack([r, g, b], axis=-1)
92
-
93
- # color_mapped = viridis_colormap(normalized)
94
-
95
- # color_mapped_uint8 = (color_mapped * 255).astype(np.uint8)
96
-
97
- # pil_img = Image.fromarray(color_mapped_uint8)
98
- # pil_img = pil_img.resize((512,512))
99
-
100
- fig = plt.figure(figsize=(6, 6))
101
- plt.imshow(show_image)
102
- plt.title('similarity Visualization')
103
- plt.axis('off')
104
-
105
- buf = io.BytesIO()
106
- plt.savefig(buf, format='png')
107
- buf.seek(0)
108
- plt.close(fig)
109
-
110
- pil_img = Image.open(buf)
111
- # buf.close()
112
- return pil_img
113
-
114
-
115
 
116
 
117
  def infer(image, candidate_labels):
@@ -126,33 +67,28 @@ with gr.Blocks() as demo:
126
 
127
  "This app uses the FG-CLIP model (qihoo360/fg-clip-base) for retrieval on CPU :"
128
  )
129
- gr.Markdown(
130
- "(Run Densefeature) only support one class!"
131
- )
132
-
133
  with gr.Row():
134
  with gr.Column():
135
  image_input = gr.Image(type="pil")
136
  text_input = gr.Textbox(label="Input a list of labels (comma seperated)")
137
  run_button = gr.Button("Run Retrieval", visible=True)
138
- dfs_button = gr.Button("Run Densefeature", visible=True)
139
  with gr.Column():
140
  fg_output = gr.Label(label="FG-CLIP Output", num_top_classes=11)
141
- dfs_output = gr.Image(label="Similarity Visualization", type="pil")
142
 
143
  examples = [
144
- # ["./baklava.jpg", "dessert on a plate, a serving of baklava, a plate and spoon"],
145
- # ["./dog.jpg", "A light brown wood stool, A bucket with a body made of dark brown plastic, A black velvet back cover for a cellular telephone, A green ball with a perforated pattern, A light blue plastic helmet made of plastic, A grey slipper made of wool, A newspaper with white and black perforated printed on a paper texture, A blue dog with a white colored head, A yellow sponge with a dark green rough surface, A book with white, dark orange and brown pages made of paper, A black ceramic scarf with a body made of fabric."],
146
  ["./Landscape.jpg", "red grass, yellow grass, green grass"],
147
  ["./cat.jpg", "two sleeping cats, two cats playing, three cats laying down"],
148
- ["./cat_dfclor.jpg", "white cat,"],
149
  ]
150
  gr.Examples(
151
  examples=examples,
152
  inputs=[image_input, text_input],
153
- # outputs=fg_output,
154
- # fn=infer,
155
  )
156
  run_button.click(fn=infer, inputs=[image_input, text_input], outputs=fg_output)
157
- dfs_button.click(fn=Get_Densefeature, inputs=[image_input, text_input], outputs=dfs_output)
158
  demo.launch()
 
53
  return results
54
 
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
 
58
  def infer(image, candidate_labels):
 
67
 
68
  "This app uses the FG-CLIP model (qihoo360/fg-clip-base) for retrieval on CPU :"
69
  )
70
+
 
 
 
71
  with gr.Row():
72
  with gr.Column():
73
  image_input = gr.Image(type="pil")
74
  text_input = gr.Textbox(label="Input a list of labels (comma seperated)")
75
  run_button = gr.Button("Run Retrieval", visible=True)
 
76
  with gr.Column():
77
  fg_output = gr.Label(label="FG-CLIP Output", num_top_classes=11)
78
+
79
 
80
  examples = [
81
+
 
82
  ["./Landscape.jpg", "red grass, yellow grass, green grass"],
83
  ["./cat.jpg", "two sleeping cats, two cats playing, three cats laying down"],
84
+
85
  ]
86
  gr.Examples(
87
  examples=examples,
88
  inputs=[image_input, text_input],
89
+ outputs=fg_output,
90
+ fn=infer,
91
  )
92
  run_button.click(fn=infer, inputs=[image_input, text_input], outputs=fg_output)
93
+
94
  demo.launch()