import gradio as gr import torch import io from PIL import Image from transformers import ( AutoImageProcessor, AutoTokenizer, AutoModelForCausalLM, ) import numpy as np model_root = "qihoo360/fg-clip-base" model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True) device = model.device tokenizer = AutoTokenizer.from_pretrained(model_root) image_processor = AutoImageProcessor.from_pretrained(model_root) import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def postprocess_result(probs, labels): pro_output = {labels[i]: probs[i] for i in range(len(labels))} return pro_output def Retrieval(image, candidate_labels): """ Takes an image and a comma-separated string of candidate labels, and returns the classification scores. """ image_size=224 image = image.convert("RGB") image = image.resize((image_size,image_size)) image_input = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].to(device) walk_short_pos = True caption_input = torch.tensor(tokenizer(candidate_labels, max_length=77, padding="max_length", truncation=True).input_ids, dtype=torch.long, device=device) with torch.no_grad(): image_feature = model.get_image_features(image_input) text_feature = model.get_text_features(caption_input,walk_short_pos=walk_short_pos) image_feature = image_feature / image_feature.norm(p=2, dim=-1, keepdim=True) text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True) logits_per_image = image_feature @ text_feature.T logits_per_image = model.logit_scale.exp() * logits_per_image probs = logits_per_image.softmax(dim=1) results = probs[0].tolist() return results def infer(image, candidate_labels): candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",") if label !=""] fg_probs = Retrieval(image, candidate_labels) return postprocess_result(fg_probs,candidate_labels) with gr.Blocks() as demo: gr.Markdown("# FG-CLIP Retrieval") gr.Markdown( "This app uses the FG-CLIP model (qihoo360/fg-clip-base) for retrieval on CPU :" ) with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil") text_input = gr.Textbox(label="Input a list of labels (comma seperated)") run_button = gr.Button("Run Retrieval", visible=True) with gr.Column(): fg_output = gr.Label(label="FG-CLIP Output", num_top_classes=11) examples = [ ["./Landscape.jpg", "red grass, yellow grass, green grass"], ["./cat.jpg", "two sleeping cats, two cats playing, three cats laying down"], ] gr.Examples( examples=examples, inputs=[image_input, text_input], outputs=fg_output, fn=infer, ) run_button.click(fn=infer, inputs=[image_input, text_input], outputs=fg_output) demo.launch()