Spaces:
Sleeping
Sleeping
리더보드 작동 시작
Browse files- app.py +9 -54
- src/display/formatting.py +0 -27
- src/display/utils.py +9 -16
- src/envs.py +0 -25
- src/populate.py +1 -3
- src/submission/check_validity.py +0 -99
- src/submission/submit.py +0 -119
app.py
CHANGED
@@ -1,60 +1,20 @@
|
|
1 |
-
import subprocess
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
-
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
|
7 |
from src.about import (
|
8 |
-
CITATION_BUTTON_LABEL,
|
9 |
-
CITATION_BUTTON_TEXT,
|
10 |
INTRODUCTION_TEXT,
|
11 |
LLM_BENCHMARKS_TEXT,
|
12 |
TITLE,
|
13 |
)
|
14 |
from src.display.css_html_js import custom_css
|
15 |
-
from src.display.utils import (
|
16 |
-
BENCHMARK_COLS,
|
17 |
-
COLS,
|
18 |
-
EVAL_COLS,
|
19 |
-
NUMERIC_INTERVALS,
|
20 |
-
TYPES,
|
21 |
-
AutoEvalColumn,
|
22 |
-
ModelType,
|
23 |
-
fields
|
24 |
-
)
|
25 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
26 |
-
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
27 |
-
|
28 |
-
|
29 |
-
def restart_space():
|
30 |
-
API.restart_space(repo_id=REPO_ID)
|
31 |
-
|
32 |
-
|
33 |
-
try:
|
34 |
-
print(EVAL_REQUESTS_PATH)
|
35 |
-
snapshot_download(
|
36 |
-
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
37 |
-
token=TOKEN
|
38 |
-
)
|
39 |
-
except Exception:
|
40 |
-
restart_space()
|
41 |
-
try:
|
42 |
-
print(EVAL_RESULTS_PATH)
|
43 |
-
snapshot_download(
|
44 |
-
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30,
|
45 |
-
token=TOKEN
|
46 |
-
)
|
47 |
-
except Exception:
|
48 |
-
restart_space()
|
49 |
|
50 |
-
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
51 |
-
leaderboard_df = original_df.copy()
|
52 |
|
53 |
-
(
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
|
59 |
|
60 |
leaderboard = gr.Blocks(css=custom_css)
|
@@ -64,12 +24,10 @@ with leaderboard:
|
|
64 |
|
65 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
66 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
|
|
|
|
67 |
leaderboard_table = gr.components.Dataframe(
|
68 |
-
value=
|
69 |
-
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
70 |
-
],
|
71 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
72 |
-
datatype=TYPES,
|
73 |
elem_id="leaderboard-table",
|
74 |
interactive=False,
|
75 |
visible=True,
|
@@ -79,7 +37,4 @@ with leaderboard:
|
|
79 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
80 |
|
81 |
|
82 |
-
scheduler = BackgroundScheduler()
|
83 |
-
scheduler.add_job(restart_space, "interval", seconds=1800)
|
84 |
-
scheduler.start()
|
85 |
leaderboard.queue(default_concurrency_limit=40).launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
+
import requests
|
|
|
4 |
|
5 |
from src.about import (
|
|
|
|
|
6 |
INTRODUCTION_TEXT,
|
7 |
LLM_BENCHMARKS_TEXT,
|
8 |
TITLE,
|
9 |
)
|
10 |
from src.display.css_html_js import custom_css
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
12 |
|
13 |
+
def get_evaluation():
|
14 |
+
response = requests.get("http://aim100.qinference.com/api/leaderboard/list")
|
15 |
+
data_json = response.json()
|
16 |
+
df = pd.DataFrame(data_json)
|
17 |
+
return df
|
18 |
|
19 |
|
20 |
leaderboard = gr.Blocks(css=custom_css)
|
|
|
24 |
|
25 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
26 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
27 |
+
# df = get_evaluation()
|
28 |
+
# dataList = get_evaluation()
|
29 |
leaderboard_table = gr.components.Dataframe(
|
30 |
+
value=get_evaluation(),
|
|
|
|
|
|
|
|
|
31 |
elem_id="leaderboard-table",
|
32 |
interactive=False,
|
33 |
visible=True,
|
|
|
37 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
38 |
|
39 |
|
|
|
|
|
|
|
40 |
leaderboard.queue(default_concurrency_limit=40).launch()
|
src/display/formatting.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
def model_hyperlink(link, model_name):
|
2 |
-
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
3 |
-
|
4 |
-
|
5 |
-
def make_clickable_model(model_name):
|
6 |
-
link = f"https://huggingface.co/{model_name}"
|
7 |
-
return model_hyperlink(link, model_name)
|
8 |
-
|
9 |
-
|
10 |
-
def styled_error(error):
|
11 |
-
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
12 |
-
|
13 |
-
|
14 |
-
def styled_warning(warn):
|
15 |
-
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
16 |
-
|
17 |
-
|
18 |
-
def styled_message(message):
|
19 |
-
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
20 |
-
|
21 |
-
|
22 |
-
def has_no_nan_values(df, columns):
|
23 |
-
return df[columns].notna().all(axis=1)
|
24 |
-
|
25 |
-
|
26 |
-
def has_nan_values(df, columns):
|
27 |
-
return df[columns].isna().any(axis=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/display/utils.py
CHANGED
@@ -23,23 +23,16 @@ class ColumnContent:
|
|
23 |
|
24 |
|
25 |
## Leaderboard columns
|
26 |
-
auto_eval_column_dict = [["
|
27 |
-
["
|
28 |
-
["
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
# Init
|
30 |
-
# Scores
|
31 |
-
for task in Tasks:
|
32 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
|
33 |
-
# Model information
|
34 |
-
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
|
35 |
-
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
|
36 |
-
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
|
37 |
-
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
|
38 |
-
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
|
39 |
-
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
|
40 |
-
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
|
41 |
-
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
|
42 |
-
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
|
43 |
|
44 |
# We use make dataclass to dynamically fill the scores from Tasks
|
45 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
23 |
|
24 |
|
25 |
## Leaderboard columns
|
26 |
+
auto_eval_column_dict = [["modelName", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)],
|
27 |
+
["total", ColumnContent, ColumnContent("Average ⬆️", "number", True)],
|
28 |
+
["inference", ColumnContent, ColumnContent("Architecture", "str", False)],
|
29 |
+
["grammar", ColumnContent, ColumnContent("Grammar", "number", False, True)],
|
30 |
+
["understanding", ColumnContent, ColumnContent("Understanding", "number", False)],
|
31 |
+
["coding", ColumnContent, ColumnContent("Coding", "number", False)],
|
32 |
+
["math", ColumnContent, ColumnContent("Math", "number", False)],
|
33 |
+
["writing", ColumnContent, ColumnContent("Write", "number", False)],
|
34 |
+
["etc", ColumnContent, ColumnContent("ETC", "number", False)]]
|
35 |
# Init
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
# We use make dataclass to dynamically fill the scores from Tasks
|
38 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
src/envs.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
from huggingface_hub import HfApi
|
4 |
-
|
5 |
-
# Info to change for your repository
|
6 |
-
# ----------------------------------
|
7 |
-
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
|
8 |
-
|
9 |
-
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
10 |
-
# ----------------------------------
|
11 |
-
|
12 |
-
REPO_ID = f"{OWNER}/leaderboard"
|
13 |
-
QUEUE_REPO = f"{OWNER}/requests"
|
14 |
-
RESULTS_REPO = f"{OWNER}/results"
|
15 |
-
|
16 |
-
# If you setup a cache later, just change HF_HOME
|
17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
18 |
-
|
19 |
-
# Local caches
|
20 |
-
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
21 |
-
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
|
22 |
-
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
|
23 |
-
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
|
24 |
-
|
25 |
-
API = HfApi(token=TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/populate.py
CHANGED
@@ -9,7 +9,6 @@ from src.leaderboard.read_evals import get_raw_eval_results
|
|
9 |
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
12 |
-
"""Creates a dataframe from all the individual experiment results"""
|
13 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
14 |
all_data_json = [v.to_dict() for v in raw_data]
|
15 |
|
@@ -23,7 +22,6 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
|
|
23 |
|
24 |
|
25 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
26 |
-
"""Creates the different dataframes for the evaluation queues requestes"""
|
27 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
28 |
all_evals = []
|
29 |
|
@@ -55,4 +53,4 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
55 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
56 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
57 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
58 |
-
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
9 |
|
10 |
|
11 |
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
|
|
12 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
13 |
all_data_json = [v.to_dict() for v in raw_data]
|
14 |
|
|
|
22 |
|
23 |
|
24 |
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
25 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
26 |
all_evals = []
|
27 |
|
|
|
53 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
54 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
55 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
56 |
+
return df_finished[cols], df_running[cols], df_pending[cols]
|
src/submission/check_validity.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import re
|
4 |
-
from collections import defaultdict
|
5 |
-
from datetime import datetime, timedelta, timezone
|
6 |
-
|
7 |
-
import huggingface_hub
|
8 |
-
from huggingface_hub import ModelCard
|
9 |
-
from huggingface_hub.hf_api import ModelInfo
|
10 |
-
from transformers import AutoConfig
|
11 |
-
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
12 |
-
|
13 |
-
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
14 |
-
"""Checks if the model card and license exist and have been filled"""
|
15 |
-
try:
|
16 |
-
card = ModelCard.load(repo_id)
|
17 |
-
except huggingface_hub.utils.EntryNotFoundError:
|
18 |
-
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
|
19 |
-
|
20 |
-
# Enforce license metadata
|
21 |
-
if card.data.license is None:
|
22 |
-
if not ("license_name" in card.data and "license_link" in card.data):
|
23 |
-
return False, (
|
24 |
-
"License not found. Please add a license to your model card using the `license` metadata or a"
|
25 |
-
" `license_name`/`license_link` pair."
|
26 |
-
)
|
27 |
-
|
28 |
-
# Enforce card content
|
29 |
-
if len(card.text) < 200:
|
30 |
-
return False, "Please add a description to your model card, it is too short."
|
31 |
-
|
32 |
-
return True, ""
|
33 |
-
|
34 |
-
def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
|
35 |
-
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
36 |
-
try:
|
37 |
-
config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
38 |
-
if test_tokenizer:
|
39 |
-
try:
|
40 |
-
tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
|
41 |
-
except ValueError as e:
|
42 |
-
return (
|
43 |
-
False,
|
44 |
-
f"uses a tokenizer which is not in a transformers release: {e}",
|
45 |
-
None
|
46 |
-
)
|
47 |
-
except Exception as e:
|
48 |
-
return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
|
49 |
-
return True, None, config
|
50 |
-
|
51 |
-
except ValueError:
|
52 |
-
return (
|
53 |
-
False,
|
54 |
-
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
55 |
-
None
|
56 |
-
)
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
return False, "was not found on hub!", None
|
60 |
-
|
61 |
-
|
62 |
-
def get_model_size(model_info: ModelInfo, precision: str):
|
63 |
-
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
|
64 |
-
try:
|
65 |
-
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
66 |
-
except (AttributeError, TypeError):
|
67 |
-
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
68 |
-
|
69 |
-
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
70 |
-
model_size = size_factor * model_size
|
71 |
-
return model_size
|
72 |
-
|
73 |
-
def get_model_arch(model_info: ModelInfo):
|
74 |
-
"""Gets the model architecture from the configuration"""
|
75 |
-
return model_info.config.get("architectures", "Unknown")
|
76 |
-
|
77 |
-
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
78 |
-
"""Gather a list of already submitted models to avoid duplicates"""
|
79 |
-
depth = 1
|
80 |
-
file_names = []
|
81 |
-
users_to_submission_dates = defaultdict(list)
|
82 |
-
|
83 |
-
for root, _, files in os.walk(requested_models_dir):
|
84 |
-
current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
|
85 |
-
if current_depth == depth:
|
86 |
-
for file in files:
|
87 |
-
if not file.endswith(".json"):
|
88 |
-
continue
|
89 |
-
with open(os.path.join(root, file), "r") as f:
|
90 |
-
info = json.load(f)
|
91 |
-
file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
|
92 |
-
|
93 |
-
# Select organisation
|
94 |
-
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
95 |
-
continue
|
96 |
-
organisation, _ = info["model"].split("/")
|
97 |
-
users_to_submission_dates[organisation].append(info["submitted_time"])
|
98 |
-
|
99 |
-
return set(file_names), users_to_submission_dates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/submission/submit.py
DELETED
@@ -1,119 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
from datetime import datetime, timezone
|
4 |
-
|
5 |
-
from src.display.formatting import styled_error, styled_message, styled_warning
|
6 |
-
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
|
7 |
-
from src.submission.check_validity import (
|
8 |
-
already_submitted_models,
|
9 |
-
check_model_card,
|
10 |
-
get_model_size,
|
11 |
-
is_model_on_hub,
|
12 |
-
)
|
13 |
-
|
14 |
-
REQUESTED_MODELS = None
|
15 |
-
USERS_TO_SUBMISSION_DATES = None
|
16 |
-
|
17 |
-
def add_new_eval(
|
18 |
-
model: str,
|
19 |
-
base_model: str,
|
20 |
-
revision: str,
|
21 |
-
precision: str,
|
22 |
-
weight_type: str,
|
23 |
-
model_type: str,
|
24 |
-
):
|
25 |
-
global REQUESTED_MODELS
|
26 |
-
global USERS_TO_SUBMISSION_DATES
|
27 |
-
if not REQUESTED_MODELS:
|
28 |
-
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
|
29 |
-
|
30 |
-
user_name = ""
|
31 |
-
model_path = model
|
32 |
-
if "/" in model:
|
33 |
-
user_name = model.split("/")[0]
|
34 |
-
model_path = model.split("/")[1]
|
35 |
-
|
36 |
-
precision = precision.split(" ")[0]
|
37 |
-
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
38 |
-
|
39 |
-
if model_type is None or model_type == "":
|
40 |
-
return styled_error("Please select a model type.")
|
41 |
-
|
42 |
-
# Does the model actually exist?
|
43 |
-
if revision == "":
|
44 |
-
revision = "main"
|
45 |
-
|
46 |
-
# Is the model on the hub?
|
47 |
-
if weight_type in ["Delta", "Adapter"]:
|
48 |
-
base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
|
49 |
-
if not base_model_on_hub:
|
50 |
-
return styled_error(f'Base model "{base_model}" {error}')
|
51 |
-
|
52 |
-
if not weight_type == "Adapter":
|
53 |
-
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
|
54 |
-
if not model_on_hub:
|
55 |
-
return styled_error(f'Model "{model}" {error}')
|
56 |
-
|
57 |
-
# Is the model info correctly filled?
|
58 |
-
try:
|
59 |
-
model_info = API.model_info(repo_id=model, revision=revision)
|
60 |
-
except Exception:
|
61 |
-
return styled_error("Could not get your model information. Please fill it up properly.")
|
62 |
-
|
63 |
-
model_size = get_model_size(model_info=model_info, precision=precision)
|
64 |
-
|
65 |
-
# Were the model card and license filled?
|
66 |
-
try:
|
67 |
-
license = model_info.cardData["license"]
|
68 |
-
except Exception:
|
69 |
-
return styled_error("Please select a license for your model")
|
70 |
-
|
71 |
-
modelcard_OK, error_msg = check_model_card(model)
|
72 |
-
if not modelcard_OK:
|
73 |
-
return styled_error(error_msg)
|
74 |
-
|
75 |
-
# Seems good, creating the eval
|
76 |
-
print("Adding new eval")
|
77 |
-
|
78 |
-
eval_entry = {
|
79 |
-
"model": model,
|
80 |
-
"base_model": base_model,
|
81 |
-
"revision": revision,
|
82 |
-
"precision": precision,
|
83 |
-
"weight_type": weight_type,
|
84 |
-
"status": "PENDING",
|
85 |
-
"submitted_time": current_time,
|
86 |
-
"model_type": model_type,
|
87 |
-
"likes": model_info.likes,
|
88 |
-
"params": model_size,
|
89 |
-
"license": license,
|
90 |
-
"private": False,
|
91 |
-
}
|
92 |
-
|
93 |
-
# Check for duplicate submission
|
94 |
-
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
|
95 |
-
return styled_warning("This model has been already submitted.")
|
96 |
-
|
97 |
-
print("Creating eval file")
|
98 |
-
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
99 |
-
os.makedirs(OUT_DIR, exist_ok=True)
|
100 |
-
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
101 |
-
|
102 |
-
with open(out_path, "w") as f:
|
103 |
-
f.write(json.dumps(eval_entry))
|
104 |
-
|
105 |
-
print("Uploading eval file")
|
106 |
-
API.upload_file(
|
107 |
-
path_or_fileobj=out_path,
|
108 |
-
path_in_repo=out_path.split("eval-queue/")[1],
|
109 |
-
repo_id=QUEUE_REPO,
|
110 |
-
repo_type="dataset",
|
111 |
-
commit_message=f"Add {model} to eval queue",
|
112 |
-
)
|
113 |
-
|
114 |
-
# Remove the local file
|
115 |
-
os.remove(out_path)
|
116 |
-
|
117 |
-
return styled_message(
|
118 |
-
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
|
119 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|