Spaces:
Sleeping
Sleeping
columns 정리2
Browse files
app.py
CHANGED
@@ -20,8 +20,7 @@ from src.display.utils import (
|
|
20 |
TYPES,
|
21 |
AutoEvalColumn,
|
22 |
ModelType,
|
23 |
-
fields
|
24 |
-
Precision
|
25 |
)
|
26 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
27 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
@@ -58,27 +57,6 @@ leaderboard_df = original_df.copy()
|
|
58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
59 |
|
60 |
|
61 |
-
# Searching and filtering
|
62 |
-
def update_table(
|
63 |
-
hidden_df: pd.DataFrame,
|
64 |
-
columns: list,
|
65 |
-
# type_query: list,
|
66 |
-
# precision_query: str,
|
67 |
-
# size_query: list,
|
68 |
-
# show_deleted: bool,
|
69 |
-
query: str,
|
70 |
-
):
|
71 |
-
# filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
|
72 |
-
filtered_df = filter_models(hidden_df)
|
73 |
-
filtered_df = filter_queries(query, filtered_df)
|
74 |
-
df = select_columns(filtered_df, columns)
|
75 |
-
return df
|
76 |
-
|
77 |
-
|
78 |
-
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
|
79 |
-
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
|
80 |
-
|
81 |
-
|
82 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
83 |
always_here_cols = [
|
84 |
AutoEvalColumn.model_type_symbol.name,
|
@@ -91,129 +69,24 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
|
91 |
return filtered_df
|
92 |
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
if query != "":
|
97 |
-
queries = [q.strip() for q in query.split(";")]
|
98 |
-
for _q in queries:
|
99 |
-
_q = _q.strip()
|
100 |
-
if _q != "":
|
101 |
-
temp_filtered_df = search_table(filtered_df, _q)
|
102 |
-
if len(temp_filtered_df) > 0:
|
103 |
-
final_df.append(temp_filtered_df)
|
104 |
-
if len(final_df) > 0:
|
105 |
-
filtered_df = pd.concat(final_df)
|
106 |
-
filtered_df = filtered_df.drop_duplicates(
|
107 |
-
subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
|
108 |
-
)
|
109 |
-
|
110 |
-
return filtered_df
|
111 |
-
|
112 |
-
|
113 |
-
def filter_models(
|
114 |
-
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
|
115 |
-
) -> pd.DataFrame:
|
116 |
-
# Show all models
|
117 |
-
if show_deleted:
|
118 |
-
filtered_df = df
|
119 |
-
else: # Show only still on the hub models
|
120 |
-
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
121 |
-
|
122 |
-
type_emoji = [t[0] for t in type_query]
|
123 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
124 |
-
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
125 |
-
|
126 |
-
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
127 |
-
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
128 |
-
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
129 |
-
filtered_df = filtered_df.loc[mask]
|
130 |
-
|
131 |
-
return filtered_df
|
132 |
-
|
133 |
-
|
134 |
-
demo = gr.Blocks(css=custom_css)
|
135 |
-
with demo:
|
136 |
gr.HTML(TITLE)
|
137 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
138 |
|
139 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
140 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
141 |
-
with gr.Row():
|
142 |
-
with gr.Column():
|
143 |
-
with gr.Row():
|
144 |
-
search_bar = gr.Textbox(
|
145 |
-
placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
|
146 |
-
show_label=False,
|
147 |
-
elem_id="search-bar",
|
148 |
-
)
|
149 |
-
with gr.Row():
|
150 |
-
shown_columns = gr.CheckboxGroup(
|
151 |
-
choices=[
|
152 |
-
c.name
|
153 |
-
for c in fields(AutoEvalColumn)
|
154 |
-
if not c.hidden and not c.never_hidden
|
155 |
-
],
|
156 |
-
value=[
|
157 |
-
c.name
|
158 |
-
for c in fields(AutoEvalColumn)
|
159 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden
|
160 |
-
],
|
161 |
-
label="Select columns to show",
|
162 |
-
elem_id="column-select",
|
163 |
-
interactive=True,
|
164 |
-
)
|
165 |
-
with gr.Column(min_width=320):
|
166 |
-
# with gr.Box(elem_id="box-filter"):
|
167 |
-
filter_columns_type = gr.CheckboxGroup(
|
168 |
-
label="Model types",
|
169 |
-
choices=[t.to_str() for t in ModelType],
|
170 |
-
value=[t.to_str() for t in ModelType],
|
171 |
-
interactive=True,
|
172 |
-
elem_id="filter-columns-type",
|
173 |
-
)
|
174 |
-
|
175 |
leaderboard_table = gr.components.Dataframe(
|
176 |
value=leaderboard_df[
|
177 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
178 |
-
+ shown_columns.value
|
179 |
],
|
180 |
-
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
181 |
datatype=TYPES,
|
182 |
elem_id="leaderboard-table",
|
183 |
interactive=False,
|
184 |
visible=True,
|
185 |
)
|
186 |
|
187 |
-
# Dummy leaderboard for handling the case when the user uses backspace key
|
188 |
-
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
189 |
-
value=original_df[COLS],
|
190 |
-
headers=COLS,
|
191 |
-
datatype=TYPES,
|
192 |
-
visible=False,
|
193 |
-
)
|
194 |
-
search_bar.submit(
|
195 |
-
update_table,
|
196 |
-
[
|
197 |
-
hidden_leaderboard_table_for_search,
|
198 |
-
shown_columns,
|
199 |
-
filter_columns_type,
|
200 |
-
search_bar,
|
201 |
-
],
|
202 |
-
leaderboard_table,
|
203 |
-
)
|
204 |
-
for selector in [shown_columns, filter_columns_type]:
|
205 |
-
selector.change(
|
206 |
-
update_table,
|
207 |
-
[
|
208 |
-
hidden_leaderboard_table_for_search,
|
209 |
-
shown_columns,
|
210 |
-
filter_columns_type,
|
211 |
-
search_bar,
|
212 |
-
],
|
213 |
-
leaderboard_table,
|
214 |
-
queue=True,
|
215 |
-
)
|
216 |
-
|
217 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
218 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
219 |
|
@@ -230,4 +103,4 @@ with demo:
|
|
230 |
scheduler = BackgroundScheduler()
|
231 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
232 |
scheduler.start()
|
233 |
-
|
|
|
20 |
TYPES,
|
21 |
AutoEvalColumn,
|
22 |
ModelType,
|
23 |
+
fields
|
|
|
24 |
)
|
25 |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
26 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
|
|
57 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
58 |
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
|
61 |
always_here_cols = [
|
62 |
AutoEvalColumn.model_type_symbol.name,
|
|
|
69 |
return filtered_df
|
70 |
|
71 |
|
72 |
+
leaderboard = gr.Blocks(css=custom_css)
|
73 |
+
with leaderboard:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
gr.HTML(TITLE)
|
75 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
76 |
|
77 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
78 |
with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
leaderboard_table = gr.components.Dataframe(
|
80 |
value=leaderboard_df[
|
81 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
|
|
82 |
],
|
83 |
+
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
84 |
datatype=TYPES,
|
85 |
elem_id="leaderboard-table",
|
86 |
interactive=False,
|
87 |
visible=True,
|
88 |
)
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
|
91 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
92 |
|
|
|
103 |
scheduler = BackgroundScheduler()
|
104 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
105 |
scheduler.start()
|
106 |
+
leaderboard.queue(default_concurrency_limit=40).launch()
|