fdisk commited on
Commit
7b638ad
·
1 Parent(s): 25eb138

columns 정리2

Browse files
Files changed (1) hide show
  1. app.py +5 -132
app.py CHANGED
@@ -20,8 +20,7 @@ from src.display.utils import (
20
  TYPES,
21
  AutoEvalColumn,
22
  ModelType,
23
- fields,
24
- Precision
25
  )
26
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
27
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
@@ -58,27 +57,6 @@ leaderboard_df = original_df.copy()
58
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
59
 
60
 
61
- # Searching and filtering
62
- def update_table(
63
- hidden_df: pd.DataFrame,
64
- columns: list,
65
- # type_query: list,
66
- # precision_query: str,
67
- # size_query: list,
68
- # show_deleted: bool,
69
- query: str,
70
- ):
71
- # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
72
- filtered_df = filter_models(hidden_df)
73
- filtered_df = filter_queries(query, filtered_df)
74
- df = select_columns(filtered_df, columns)
75
- return df
76
-
77
-
78
- def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
79
- return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
80
-
81
-
82
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
83
  always_here_cols = [
84
  AutoEvalColumn.model_type_symbol.name,
@@ -91,129 +69,24 @@ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
91
  return filtered_df
92
 
93
 
94
- def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
95
- final_df = []
96
- if query != "":
97
- queries = [q.strip() for q in query.split(";")]
98
- for _q in queries:
99
- _q = _q.strip()
100
- if _q != "":
101
- temp_filtered_df = search_table(filtered_df, _q)
102
- if len(temp_filtered_df) > 0:
103
- final_df.append(temp_filtered_df)
104
- if len(final_df) > 0:
105
- filtered_df = pd.concat(final_df)
106
- filtered_df = filtered_df.drop_duplicates(
107
- subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
108
- )
109
-
110
- return filtered_df
111
-
112
-
113
- def filter_models(
114
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
115
- ) -> pd.DataFrame:
116
- # Show all models
117
- if show_deleted:
118
- filtered_df = df
119
- else: # Show only still on the hub models
120
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
121
-
122
- type_emoji = [t[0] for t in type_query]
123
- filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
124
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
125
-
126
- numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
127
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
128
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
129
- filtered_df = filtered_df.loc[mask]
130
-
131
- return filtered_df
132
-
133
-
134
- demo = gr.Blocks(css=custom_css)
135
- with demo:
136
  gr.HTML(TITLE)
137
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
138
 
139
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
140
  with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
141
- with gr.Row():
142
- with gr.Column():
143
- with gr.Row():
144
- search_bar = gr.Textbox(
145
- placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
146
- show_label=False,
147
- elem_id="search-bar",
148
- )
149
- with gr.Row():
150
- shown_columns = gr.CheckboxGroup(
151
- choices=[
152
- c.name
153
- for c in fields(AutoEvalColumn)
154
- if not c.hidden and not c.never_hidden
155
- ],
156
- value=[
157
- c.name
158
- for c in fields(AutoEvalColumn)
159
- if c.displayed_by_default and not c.hidden and not c.never_hidden
160
- ],
161
- label="Select columns to show",
162
- elem_id="column-select",
163
- interactive=True,
164
- )
165
- with gr.Column(min_width=320):
166
- # with gr.Box(elem_id="box-filter"):
167
- filter_columns_type = gr.CheckboxGroup(
168
- label="Model types",
169
- choices=[t.to_str() for t in ModelType],
170
- value=[t.to_str() for t in ModelType],
171
- interactive=True,
172
- elem_id="filter-columns-type",
173
- )
174
-
175
  leaderboard_table = gr.components.Dataframe(
176
  value=leaderboard_df[
177
  [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
178
- + shown_columns.value
179
  ],
180
- headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
181
  datatype=TYPES,
182
  elem_id="leaderboard-table",
183
  interactive=False,
184
  visible=True,
185
  )
186
 
187
- # Dummy leaderboard for handling the case when the user uses backspace key
188
- hidden_leaderboard_table_for_search = gr.components.Dataframe(
189
- value=original_df[COLS],
190
- headers=COLS,
191
- datatype=TYPES,
192
- visible=False,
193
- )
194
- search_bar.submit(
195
- update_table,
196
- [
197
- hidden_leaderboard_table_for_search,
198
- shown_columns,
199
- filter_columns_type,
200
- search_bar,
201
- ],
202
- leaderboard_table,
203
- )
204
- for selector in [shown_columns, filter_columns_type]:
205
- selector.change(
206
- update_table,
207
- [
208
- hidden_leaderboard_table_for_search,
209
- shown_columns,
210
- filter_columns_type,
211
- search_bar,
212
- ],
213
- leaderboard_table,
214
- queue=True,
215
- )
216
-
217
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
218
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
219
 
@@ -230,4 +103,4 @@ with demo:
230
  scheduler = BackgroundScheduler()
231
  scheduler.add_job(restart_space, "interval", seconds=1800)
232
  scheduler.start()
233
- demo.queue(default_concurrency_limit=40).launch()
 
20
  TYPES,
21
  AutoEvalColumn,
22
  ModelType,
23
+ fields
 
24
  )
25
  from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
26
  from src.populate import get_evaluation_queue_df, get_leaderboard_df
 
57
  ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
58
 
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
61
  always_here_cols = [
62
  AutoEvalColumn.model_type_symbol.name,
 
69
  return filtered_df
70
 
71
 
72
+ leaderboard = gr.Blocks(css=custom_css)
73
+ with leaderboard:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  gr.HTML(TITLE)
75
  gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
76
 
77
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
78
  with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  leaderboard_table = gr.components.Dataframe(
80
  value=leaderboard_df[
81
  [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
 
82
  ],
83
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
84
  datatype=TYPES,
85
  elem_id="leaderboard-table",
86
  interactive=False,
87
  visible=True,
88
  )
89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
91
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
92
 
 
103
  scheduler = BackgroundScheduler()
104
  scheduler.add_job(restart_space, "interval", seconds=1800)
105
  scheduler.start()
106
+ leaderboard.queue(default_concurrency_limit=40).launch()