Spaces:
Running
on
T4
Running
on
T4
File size: 26,309 Bytes
4562a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
import gzip
import json
import os.path as osp
import random
import socket
import time
import torch
import warnings
import numpy as np
from PIL import Image, ImageFile
from tqdm import tqdm
from pytorch3d.renderer import PerspectiveCameras
from torch.utils.data import Dataset
from torchvision import transforms
import matplotlib.pyplot as plt
from scipy import ndimage as nd
from diffusionsfm.utils.distortion import distort_image
HOSTNAME = socket.gethostname()
CO3D_DIR = "../co3d_data" # update this
CO3D_ANNOTATION_DIR = osp.join(CO3D_DIR, "co3d_annotations")
CO3D_DIR = CO3D_DEPTH_DIR = osp.join(CO3D_DIR, "co3d")
order_path = osp.join(
CO3D_DIR, "co3d_v2_random_order_{sample_num}/{category}.json"
)
TRAINING_CATEGORIES = [
"apple",
"backpack",
"banana",
"baseballbat",
"baseballglove",
"bench",
"bicycle",
"bottle",
"bowl",
"broccoli",
"cake",
"car",
"carrot",
"cellphone",
"chair",
"cup",
"donut",
"hairdryer",
"handbag",
"hydrant",
"keyboard",
"laptop",
"microwave",
"motorcycle",
"mouse",
"orange",
"parkingmeter",
"pizza",
"plant",
"stopsign",
"teddybear",
"toaster",
"toilet",
"toybus",
"toyplane",
"toytrain",
"toytruck",
"tv",
"umbrella",
"vase",
"wineglass",
]
TEST_CATEGORIES = [
"ball",
"book",
"couch",
"frisbee",
"hotdog",
"kite",
"remote",
"sandwich",
"skateboard",
"suitcase",
]
assert len(TRAINING_CATEGORIES) + len(TEST_CATEGORIES) == 51
Image.MAX_IMAGE_PIXELS = None
ImageFile.LOAD_TRUNCATED_IMAGES = True
def fill_depths(data, invalid=None):
data_list = []
for i in range(data.shape[0]):
data_item = data[i].numpy()
# Invalid must be 1 where stuff is invalid, 0 where valid
ind = nd.distance_transform_edt(
invalid[i], return_distances=False, return_indices=True
)
data_list.append(torch.tensor(data_item[tuple(ind)]))
return torch.stack(data_list, dim=0)
def full_scene_scale(batch):
cameras = PerspectiveCameras(R=batch["R"], T=batch["T"], device="cuda")
cc = cameras.get_camera_center()
centroid = torch.mean(cc, dim=0)
diffs = cc - centroid
norms = torch.linalg.norm(diffs, dim=1)
furthest_index = torch.argmax(norms).item()
scale = norms[furthest_index].item()
return scale
def square_bbox(bbox, padding=0.0, astype=None, tight=False):
"""
Computes a square bounding box, with optional padding parameters.
Args:
bbox: Bounding box in xyxy format (4,).
Returns:
square_bbox in xyxy format (4,).
"""
if astype is None:
astype = type(bbox[0])
bbox = np.array(bbox)
center = (bbox[:2] + bbox[2:]) / 2
extents = (bbox[2:] - bbox[:2]) / 2
# No black bars if tight
if tight:
s = min(extents) * (1 + padding)
else:
s = max(extents) * (1 + padding)
square_bbox = np.array(
[center[0] - s, center[1] - s, center[0] + s, center[1] + s],
dtype=astype,
)
return square_bbox
def unnormalize_image(image, return_numpy=True, return_int=True):
if isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
if image.ndim == 3:
if image.shape[0] == 3:
image = image[None, ...]
elif image.shape[2] == 3:
image = image.transpose(2, 0, 1)[None, ...]
else:
raise ValueError(f"Unexpected image shape: {image.shape}")
elif image.ndim == 4:
if image.shape[1] == 3:
pass
elif image.shape[3] == 3:
image = image.transpose(0, 3, 1, 2)
else:
raise ValueError(f"Unexpected batch image shape: {image.shape}")
else:
raise ValueError(f"Unsupported input shape: {image.shape}")
mean = np.array([0.485, 0.456, 0.406])[None, :, None, None]
std = np.array([0.229, 0.224, 0.225])[None, :, None, None]
image = image * std + mean
if return_int:
image = np.clip(image * 255.0, 0, 255).astype(np.uint8)
else:
image = np.clip(image, 0.0, 1.0)
if image.shape[0] == 1:
image = image[0]
if return_numpy:
return image
else:
return torch.from_numpy(image)
def unnormalize_image_for_vis(image):
assert len(image.shape) == 5 and image.shape[2] == 3
mean = torch.tensor([0.485, 0.456, 0.406]).view(1, 1, 3, 1, 1).to(image.device)
std = torch.tensor([0.229, 0.224, 0.225]).view(1, 1, 3, 1, 1).to(image.device)
image = image * std + mean
image = (image - 0.5) / 0.5
return image
def _transform_intrinsic(image, bbox, principal_point, focal_length):
# Rescale intrinsics to match bbox
half_box = np.array([image.width, image.height]).astype(np.float32) / 2
org_scale = min(half_box).astype(np.float32)
# Pixel coordinates
principal_point_px = half_box - (np.array(principal_point) * org_scale)
focal_length_px = np.array(focal_length) * org_scale
principal_point_px -= bbox[:2]
new_bbox = (bbox[2:] - bbox[:2]) / 2
new_scale = min(new_bbox)
# NDC coordinates
new_principal_ndc = (new_bbox - principal_point_px) / new_scale
new_focal_ndc = focal_length_px / new_scale
principal_point = torch.tensor(new_principal_ndc.astype(np.float32))
focal_length = torch.tensor(new_focal_ndc.astype(np.float32))
return principal_point, focal_length
def construct_camera_from_batch(batch, device):
if isinstance(device, int):
device = f"cuda:{device}"
return PerspectiveCameras(
R=batch["R"].reshape(-1, 3, 3),
T=batch["T"].reshape(-1, 3),
focal_length=batch["focal_lengths"].reshape(-1, 2),
principal_point=batch["principal_points"].reshape(-1, 2),
image_size=batch["image_sizes"].reshape(-1, 2),
device=device,
)
def save_batch_images(images, fname):
cmap = plt.get_cmap("hsv")
num_frames = len(images)
num_rows = len(images)
num_cols = 4
figsize = (num_cols * 2, num_rows * 2)
fig, axs = plt.subplots(num_rows, num_cols, figsize=figsize)
axs = axs.flatten()
for i in range(num_rows):
for j in range(4):
if i < num_frames:
axs[i * 4 + j].imshow(unnormalize_image(images[i][j]))
for s in ["bottom", "top", "left", "right"]:
axs[i * 4 + j].spines[s].set_color(cmap(i / (num_frames)))
axs[i * 4 + j].spines[s].set_linewidth(5)
axs[i * 4 + j].set_xticks([])
axs[i * 4 + j].set_yticks([])
else:
axs[i * 4 + j].axis("off")
plt.tight_layout()
plt.savefig(fname)
def jitter_bbox(
square_bbox,
jitter_scale=(1.1, 1.2),
jitter_trans=(-0.07, 0.07),
direction_from_size=None,
):
square_bbox = np.array(square_bbox.astype(float))
s = np.random.uniform(jitter_scale[0], jitter_scale[1])
# Jitter only one dimension if center cropping
tx, ty = np.random.uniform(jitter_trans[0], jitter_trans[1], size=2)
if direction_from_size is not None:
if direction_from_size[0] > direction_from_size[1]:
tx = 0
else:
ty = 0
side_length = square_bbox[2] - square_bbox[0]
center = (square_bbox[:2] + square_bbox[2:]) / 2 + np.array([tx, ty]) * side_length
extent = side_length / 2 * s
ul = center - extent
lr = ul + 2 * extent
return np.concatenate((ul, lr))
class Co3dDataset(Dataset):
def __init__(
self,
category=("all_train",),
split="train",
transform=None,
num_images=2,
img_size=224,
mask_images=False,
crop_images=True,
co3d_dir=None,
co3d_annotation_dir=None,
precropped_images=False,
apply_augmentation=True,
normalize_cameras=True,
no_images=False,
sample_num=None,
seed=0,
load_extra_cameras=False,
distort_image=False,
load_depths=False,
center_crop=False,
depth_size=256,
mask_holes=False,
object_mask=True,
):
"""
Args:
num_images: Number of images in each batch.
perspective_correction (str):
"none": No perspective correction.
"warp": Warp the image and label.
"label_only": Correct the label only.
"""
start_time = time.time()
self.category = category
self.split = split
self.transform = transform
self.num_images = num_images
self.img_size = img_size
self.mask_images = mask_images
self.crop_images = crop_images
self.precropped_images = precropped_images
self.apply_augmentation = apply_augmentation
self.normalize_cameras = normalize_cameras
self.no_images = no_images
self.sample_num = sample_num
self.load_extra_cameras = load_extra_cameras
self.distort = distort_image
self.load_depths = load_depths
self.center_crop = center_crop
self.depth_size = depth_size
self.mask_holes = mask_holes
self.object_mask = object_mask
if self.apply_augmentation:
if self.center_crop:
self.jitter_scale = (0.8, 1.1)
self.jitter_trans = (0.0, 0.0)
else:
self.jitter_scale = (1.1, 1.2)
self.jitter_trans = (-0.07, 0.07)
else:
# Note if trained with apply_augmentation, we should still use
# apply_augmentation at test time.
self.jitter_scale = (1, 1)
self.jitter_trans = (0.0, 0.0)
if self.distort:
self.k1_max = 1.0
self.k2_max = 1.0
if co3d_dir is not None:
self.co3d_dir = co3d_dir
self.co3d_annotation_dir = co3d_annotation_dir
else:
self.co3d_dir = CO3D_DIR
self.co3d_annotation_dir = CO3D_ANNOTATION_DIR
self.co3d_depth_dir = CO3D_DEPTH_DIR
if isinstance(self.category, str):
self.category = [self.category]
if "all_train" in self.category:
self.category = TRAINING_CATEGORIES
if "all_test" in self.category:
self.category = TEST_CATEGORIES
if "full" in self.category:
self.category = TRAINING_CATEGORIES + TEST_CATEGORIES
self.category = sorted(self.category)
self.is_single_category = len(self.category) == 1
# Fixing seed
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
print(f"Co3d ({split}):")
self.low_quality_translations = [
"411_55952_107659",
"427_59915_115716",
"435_61970_121848",
"112_13265_22828",
"110_13069_25642",
"165_18080_34378",
"368_39891_78502",
"391_47029_93665",
"20_695_1450",
"135_15556_31096",
"417_57572_110680",
] # Initialized with sequences with poor depth masks
self.rotations = {}
self.category_map = {}
for c in tqdm(self.category):
annotation_file = osp.join(
self.co3d_annotation_dir, f"{c}_{self.split}.jgz"
)
with gzip.open(annotation_file, "r") as fin:
annotation = json.loads(fin.read())
counter = 0
for seq_name, seq_data in annotation.items():
counter += 1
if len(seq_data) < self.num_images:
continue
filtered_data = []
self.category_map[seq_name] = c
bad_seq = False
for data in seq_data:
# Make sure translations are not ridiculous and rotations are valid
det = np.linalg.det(data["R"])
if (np.abs(data["T"]) > 1e5).any() or det < 0.99 or det > 1.01:
bad_seq = True
self.low_quality_translations.append(seq_name)
break
# Ignore all unnecessary information.
filtered_data.append(
{
"filepath": data["filepath"],
"bbox": data["bbox"],
"R": data["R"],
"T": data["T"],
"focal_length": data["focal_length"],
"principal_point": data["principal_point"],
},
)
if not bad_seq:
self.rotations[seq_name] = filtered_data
self.sequence_list = list(self.rotations.keys())
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
if self.transform is None:
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Resize(self.img_size, antialias=True),
transforms.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
]
)
self.transform_depth = transforms.Compose(
[
transforms.Resize(
self.depth_size,
antialias=False,
interpolation=transforms.InterpolationMode.NEAREST_EXACT,
),
]
)
print(
f"Low quality translation sequences, not used: {self.low_quality_translations}"
)
print(f"Data size: {len(self)}")
print(f"Data loading took {(time.time()-start_time)} seconds.")
def __len__(self):
return len(self.sequence_list)
def __getitem__(self, index):
num_to_load = self.num_images if not self.load_extra_cameras else 8
sequence_name = self.sequence_list[index % len(self.sequence_list)]
metadata = self.rotations[sequence_name]
if self.sample_num is not None:
with open(
order_path.format(sample_num=self.sample_num, category=self.category[0])
) as f:
order = json.load(f)
ids = order[sequence_name][:num_to_load]
else:
replace = len(metadata) < 8
ids = np.random.choice(len(metadata), num_to_load, replace=replace)
return self.get_data(index=index, ids=ids, num_valid_frames=num_to_load)
def _get_scene_scale(self, sequence_name):
n = len(self.rotations[sequence_name])
R = torch.zeros(n, 3, 3)
T = torch.zeros(n, 3)
for i, ann in enumerate(self.rotations[sequence_name]):
R[i, ...] = torch.tensor(self.rotations[sequence_name][i]["R"])
T[i, ...] = torch.tensor(self.rotations[sequence_name][i]["T"])
cameras = PerspectiveCameras(R=R, T=T)
cc = cameras.get_camera_center()
centeroid = torch.mean(cc, dim=0)
diff = cc - centeroid
norm = torch.norm(diff, dim=1)
scale = torch.max(norm).item()
return scale
def _crop_image(self, image, bbox):
image_crop = transforms.functional.crop(
image,
top=bbox[1],
left=bbox[0],
height=bbox[3] - bbox[1],
width=bbox[2] - bbox[0],
)
return image_crop
def _transform_intrinsic(self, image, bbox, principal_point, focal_length):
half_box = np.array([image.width, image.height]).astype(np.float32) / 2
org_scale = min(half_box).astype(np.float32)
# Pixel coordinates
principal_point_px = half_box - (np.array(principal_point) * org_scale)
focal_length_px = np.array(focal_length) * org_scale
principal_point_px -= bbox[:2]
new_bbox = (bbox[2:] - bbox[:2]) / 2
new_scale = min(new_bbox)
# NDC coordinates
new_principal_ndc = (new_bbox - principal_point_px) / new_scale
new_focal_ndc = focal_length_px / new_scale
return new_principal_ndc.astype(np.float32), new_focal_ndc.astype(np.float32)
def get_data(
self,
index=None,
sequence_name=None,
ids=(0, 1),
no_images=False,
num_valid_frames=None,
load_using_order=None,
):
if load_using_order is not None:
with open(
order_path.format(sample_num=self.sample_num, category=self.category[0])
) as f:
order = json.load(f)
ids = order[sequence_name][:load_using_order]
if sequence_name is None:
index = index % len(self.sequence_list)
sequence_name = self.sequence_list[index]
metadata = self.rotations[sequence_name]
category = self.category_map[sequence_name]
# Read image & camera information from annotations
annos = [metadata[i] for i in ids]
images = []
image_sizes = []
PP = []
FL = []
crop_parameters = []
filenames = []
distortion_parameters = []
depths = []
depth_masks = []
object_masks = []
dino_images = []
for anno in annos:
filepath = anno["filepath"]
if not no_images:
image = Image.open(osp.join(self.co3d_dir, filepath)).convert("RGB")
image_size = image.size
# Optionally mask images with black background
if self.mask_images:
black_image = Image.new("RGB", image_size, (0, 0, 0))
mask_name = osp.basename(filepath.replace(".jpg", ".png"))
mask_path = osp.join(
self.co3d_dir, category, sequence_name, "masks", mask_name
)
mask = Image.open(mask_path).convert("L")
if mask.size != image_size:
mask = mask.resize(image_size)
mask = Image.fromarray(np.array(mask) > 125)
image = Image.composite(image, black_image, mask)
if self.object_mask:
mask_name = osp.basename(filepath.replace(".jpg", ".png"))
mask_path = osp.join(
self.co3d_dir, category, sequence_name, "masks", mask_name
)
mask = Image.open(mask_path).convert("L")
if mask.size != image_size:
mask = mask.resize(image_size)
mask = torch.from_numpy(np.array(mask) > 125)
# Determine crop, Resnet wants square images
bbox = np.array(anno["bbox"])
good_bbox = ((bbox[2:] - bbox[:2]) > 30).all()
bbox = (
anno["bbox"]
if not self.center_crop and good_bbox
else [0, 0, image.width, image.height]
)
# Distort image and bbox if desired
if self.distort:
k1 = random.uniform(0, self.k1_max)
k2 = random.uniform(0, self.k2_max)
try:
image, bbox = distort_image(
image, np.array(bbox), k1, k2, modify_bbox=True
)
except:
print("INFO:")
print(sequence_name)
print(index)
print(ids)
print(k1)
print(k2)
distortion_parameters.append(torch.FloatTensor([k1, k2]))
bbox = square_bbox(np.array(bbox), tight=self.center_crop)
if self.apply_augmentation:
bbox = jitter_bbox(
bbox,
jitter_scale=self.jitter_scale,
jitter_trans=self.jitter_trans,
direction_from_size=image.size if self.center_crop else None,
)
bbox = np.around(bbox).astype(int)
# Crop parameters
crop_center = (bbox[:2] + bbox[2:]) / 2
principal_point = torch.tensor(anno["principal_point"])
focal_length = torch.tensor(anno["focal_length"])
# convert crop center to correspond to a "square" image
width, height = image.size
length = max(width, height)
s = length / min(width, height)
crop_center = crop_center + (length - np.array([width, height])) / 2
# convert to NDC
cc = s - 2 * s * crop_center / length
crop_width = 2 * s * (bbox[2] - bbox[0]) / length
crop_params = torch.tensor([-cc[0], -cc[1], crop_width, s])
# Crop and normalize image
if not self.precropped_images:
image = self._crop_image(image, bbox)
try:
image = self.transform(image)
except:
print("INFO:")
print(sequence_name)
print(index)
print(ids)
print(k1)
print(k2)
images.append(image[:, : self.img_size, : self.img_size])
crop_parameters.append(crop_params)
if self.load_depths:
# Open depth map
depth_name = osp.basename(
filepath.replace(".jpg", ".jpg.geometric.png")
)
depth_path = osp.join(
self.co3d_depth_dir,
category,
sequence_name,
"depths",
depth_name,
)
depth_pil = Image.open(depth_path)
# 16 bit float type casting
depth = torch.tensor(
np.frombuffer(
np.array(depth_pil, dtype=np.uint16), dtype=np.float16
)
.astype(np.float32)
.reshape((depth_pil.size[1], depth_pil.size[0]))
)
# Crop and resize as with images
if depth_pil.size != image_size:
# bbox may have the wrong scale
bbox = depth_pil.size[0] * bbox / image_size[0]
if self.object_mask:
assert mask.shape == depth.shape
bbox = np.around(bbox).astype(int)
depth = self._crop_image(depth, bbox)
# Resize
depth = self.transform_depth(depth.unsqueeze(0))[
0, : self.depth_size, : self.depth_size
]
depths.append(depth)
if self.object_mask:
mask = self._crop_image(mask, bbox)
mask = self.transform_depth(mask.unsqueeze(0))[
0, : self.depth_size, : self.depth_size
]
object_masks.append(mask)
PP.append(principal_point)
FL.append(focal_length)
image_sizes.append(torch.tensor([self.img_size, self.img_size]))
filenames.append(filepath)
if not no_images:
if self.load_depths:
depths = torch.stack(depths)
depth_masks = torch.logical_or(depths <= 0, depths.isinf())
depth_masks = (~depth_masks).long()
if self.object_mask:
object_masks = torch.stack(object_masks, dim=0)
if self.mask_holes:
depths = fill_depths(depths, depth_masks == 0)
# Sometimes mask_holes misses stuff
new_masks = torch.logical_or(depths <= 0, depths.isinf())
new_masks = (~new_masks).long()
depths[new_masks == 0] = -1
assert torch.logical_or(depths > 0, depths == -1).all()
assert not (depths.isinf()).any()
assert not (depths.isnan()).any()
if self.load_extra_cameras:
# Remove the extra loaded image, for saving space
images = images[: self.num_images]
if self.distort:
distortion_parameters = torch.stack(distortion_parameters)
images = torch.stack(images)
crop_parameters = torch.stack(crop_parameters)
focal_lengths = torch.stack(FL)
principal_points = torch.stack(PP)
image_sizes = torch.stack(image_sizes)
else:
images = None
crop_parameters = None
distortion_parameters = None
focal_lengths = []
principal_points = []
image_sizes = []
# Assemble batch info to send back
R = torch.stack([torch.tensor(anno["R"]) for anno in annos])
T = torch.stack([torch.tensor(anno["T"]) for anno in annos])
batch = {
"model_id": sequence_name,
"category": category,
"n": len(metadata),
"num_valid_frames": num_valid_frames,
"ind": torch.tensor(ids),
"image": images,
"depth": depths,
"depth_masks": depth_masks,
"object_masks": object_masks,
"R": R,
"T": T,
"focal_length": focal_lengths,
"principal_point": principal_points,
"image_size": image_sizes,
"crop_parameters": crop_parameters,
"distortion_parameters": torch.zeros(4),
"filename": filenames,
"category": category,
"dataset": "co3d",
}
return batch
|