Spaces:
Running
on
T4
Running
on
T4
File size: 7,038 Bytes
4562a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
"""
python -m diffusionsfm.eval.eval_jobs --eval_path output/multi_diffusionsfm_dense --use_submitit
"""
import os
import json
import submitit
import argparse
import itertools
from glob import glob
import numpy as np
from tqdm.auto import tqdm
from diffusionsfm.dataset.co3d_v2 import TEST_CATEGORIES, TRAINING_CATEGORIES
from diffusionsfm.eval.eval_category import save_results
from diffusionsfm.utils.slurm import submitit_job_watcher
def evaluate_diffusionsfm(eval_path, use_submitit, mode):
JOB_PARAMS = {
"output_dir": [eval_path],
"checkpoint": [800_000],
"num_images": [2, 3, 4, 5, 6, 7, 8],
"sample_num": [0, 1, 2, 3, 4],
"category": TEST_CATEGORIES, # TRAINING_CATEGORIES + TEST_CATEGORIES,
"calculate_additional_timesteps": [True],
}
if mode == "test":
JOB_PARAMS["category"] = TEST_CATEGORIES
elif mode == "train1":
JOB_PARAMS["category"] = TRAINING_CATEGORIES[:len(TRAINING_CATEGORIES) // 2]
elif mode == "train2":
JOB_PARAMS["category"] = TRAINING_CATEGORIES[len(TRAINING_CATEGORIES) // 2:]
keys, values = zip(*JOB_PARAMS.items())
job_configs = [dict(zip(keys, p)) for p in itertools.product(*values)]
if use_submitit:
log_output = "./slurm_logs"
executor = submitit.AutoExecutor(
cluster=None, folder=log_output, slurm_max_num_timeout=10
)
# Use your own parameters
executor.update_parameters(
slurm_additional_parameters={
"nodes": 1,
"cpus-per-task": 5,
"gpus": 1,
"time": "6:00:00",
"partition": "all",
"exclude": "grogu-1-9, grogu-1-14,"
}
)
jobs = []
with executor.batch():
# This context manager submits all jobs at once at the end.
for params in job_configs:
job = executor.submit(save_results, **params)
job_param = f"{params['category']}_N{params['num_images']}_{params['sample_num']}"
jobs.append((job_param, job))
jobs = {f"{job_param}_{job.job_id}": job for job_param, job in jobs}
submitit_job_watcher(jobs)
else:
for job_config in tqdm(job_configs):
# This is much slower.
save_results(**job_config)
def process_predictions(eval_path, pred_index, checkpoint=800_000, threshold_R=15, threshold_CC=0.1):
"""
pred_index should be 1 (corresponding to T=90)
"""
def aggregate_per_category(categories, metric_key, num_images, sample_num, threshold=None):
"""
Aggregates one metric over all data points in a prediction file and then across categories.
- For R_error and CC_error: use mean to threshold-based accuracy
- For CD and CD_Object: use median to reduce the effect of outliers
"""
per_category_values = []
for category in tqdm(categories, desc=f"Sample {sample_num}, N={num_images}, {metric_key}"):
per_pred_values = []
data_path = glob(
os.path.join(eval_path, "eval", f"{category}_{num_images}_{sample_num}_ckpt{checkpoint}*.json")
)[0]
with open(data_path) as f:
eval_data = json.load(f)
for preds in eval_data.values():
if metric_key in ["R_error", "CC_error"]:
vals = np.array(preds[pred_index][metric_key])
per_pred_values.append(np.mean(vals < threshold))
else:
per_pred_values.append(preds[pred_index][metric_key])
# Aggregate over all predictions within this category
per_category_values.append(
np.mean(per_pred_values) if metric_key in ["R_error", "CC_error"]
else np.median(per_pred_values) # CD or CD_Object — use median to filter outliers
)
if metric_key in ["R_error", "CC_error"]:
return np.mean(per_category_values)
else:
return np.median(per_category_values)
def aggregate_metric(categories, metric_key, num_images, threshold=None):
"""Aggregates one metric over 5 random samples per category and returns the final mean"""
return np.mean([
aggregate_per_category(categories, metric_key, num_images, sample_num, threshold=threshold)
for sample_num in range(5)
])
# Output containers
all_seen_acc_R, all_seen_acc_CC = [], []
all_seen_CD, all_seen_CD_Object = [], []
all_unseen_acc_R, all_unseen_acc_CC = [], []
all_unseen_CD, all_unseen_CD_Object = [], []
for num_images in range(2, 9):
# Seen categories
all_seen_acc_R.append(
aggregate_metric(TRAINING_CATEGORIES, "R_error", num_images, threshold=threshold_R)
)
all_seen_acc_CC.append(
aggregate_metric(TRAINING_CATEGORIES, "CC_error", num_images, threshold=threshold_CC)
)
all_seen_CD.append(
aggregate_metric(TRAINING_CATEGORIES, "CD", num_images)
)
all_seen_CD_Object.append(
aggregate_metric(TRAINING_CATEGORIES, "CD_Object", num_images)
)
# Unseen categories
all_unseen_acc_R.append(
aggregate_metric(TEST_CATEGORIES, "R_error", num_images, threshold=threshold_R)
)
all_unseen_acc_CC.append(
aggregate_metric(TEST_CATEGORIES, "CC_error", num_images, threshold=threshold_CC)
)
all_unseen_CD.append(
aggregate_metric(TEST_CATEGORIES, "CD", num_images)
)
all_unseen_CD_Object.append(
aggregate_metric(TEST_CATEGORIES, "CD_Object", num_images)
)
# Print the results in formatted rows
print("N= ", " ".join(f"{i: 5}" for i in range(2, 9)))
print("Seen R ", " ".join([f"{x:0.3f}" for x in all_seen_acc_R]))
print("Seen CC ", " ".join([f"{x:0.3f}" for x in all_seen_acc_CC]))
print("Seen CD ", " ".join([f"{x:0.3f}" for x in all_seen_CD]))
print("Seen CD_Obj ", " ".join([f"{x:0.3f}" for x in all_seen_CD_Object]))
print("Unseen R ", " ".join([f"{x:0.3f}" for x in all_unseen_acc_R]))
print("Unseen CC ", " ".join([f"{x:0.3f}" for x in all_unseen_acc_CC]))
print("Unseen CD ", " ".join([f"{x:0.3f}" for x in all_unseen_CD]))
print("Unseen CD_Obj", " ".join([f"{x:0.3f}" for x in all_unseen_CD_Object]))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--eval_path", type=str, default=None)
parser.add_argument("--use_submitit", action="store_true")
parser.add_argument("--mode", type=str, default="test")
args = parser.parse_args()
eval_path = "output/multi_diffusionsfm_dense" if args.eval_path is None else args.eval_path
use_submitit = args.use_submitit
mode = args.mode
evaluate_diffusionsfm(eval_path, use_submitit, mode)
process_predictions(eval_path, 1) |