File size: 7,038 Bytes
4562a06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
python -m diffusionsfm.eval.eval_jobs --eval_path output/multi_diffusionsfm_dense --use_submitit
"""

import os
import json
import submitit
import argparse
import itertools
from glob import glob

import numpy as np
from tqdm.auto import tqdm

from diffusionsfm.dataset.co3d_v2 import TEST_CATEGORIES, TRAINING_CATEGORIES
from diffusionsfm.eval.eval_category import save_results
from diffusionsfm.utils.slurm import submitit_job_watcher


def evaluate_diffusionsfm(eval_path, use_submitit, mode):
    JOB_PARAMS = {
        "output_dir": [eval_path],
        "checkpoint": [800_000],
        "num_images": [2, 3, 4, 5, 6, 7, 8],
        "sample_num": [0, 1, 2, 3, 4],
        "category": TEST_CATEGORIES, # TRAINING_CATEGORIES + TEST_CATEGORIES,
        "calculate_additional_timesteps": [True],
    }
    if mode == "test":
        JOB_PARAMS["category"] = TEST_CATEGORIES
    elif mode == "train1":
        JOB_PARAMS["category"] = TRAINING_CATEGORIES[:len(TRAINING_CATEGORIES) // 2]
    elif mode == "train2":
        JOB_PARAMS["category"] = TRAINING_CATEGORIES[len(TRAINING_CATEGORIES) // 2:]
    keys, values = zip(*JOB_PARAMS.items())
    job_configs = [dict(zip(keys, p)) for p in itertools.product(*values)]

    if use_submitit:
        log_output = "./slurm_logs"
        executor = submitit.AutoExecutor(
            cluster=None, folder=log_output, slurm_max_num_timeout=10
        )
        # Use your own parameters
        executor.update_parameters(
            slurm_additional_parameters={
                "nodes": 1,
                "cpus-per-task": 5,
                "gpus": 1,
                "time": "6:00:00",
                "partition": "all",
                "exclude": "grogu-1-9, grogu-1-14,"
            }
        )
        jobs = []
        with executor.batch():
            # This context manager submits all jobs at once at the end.
            for params in job_configs:
                job = executor.submit(save_results, **params)
                job_param = f"{params['category']}_N{params['num_images']}_{params['sample_num']}"
                jobs.append((job_param, job))
        jobs = {f"{job_param}_{job.job_id}": job for job_param, job in jobs}
        submitit_job_watcher(jobs)
    else:
        for job_config in tqdm(job_configs):
            # This is much slower.
            save_results(**job_config)


def process_predictions(eval_path, pred_index, checkpoint=800_000, threshold_R=15, threshold_CC=0.1):
    """
    pred_index should be 1 (corresponding to T=90)
    """
    def aggregate_per_category(categories, metric_key, num_images, sample_num, threshold=None):
        """
        Aggregates one metric over all data points in a prediction file and then across categories.
        - For R_error and CC_error: use mean to threshold-based accuracy
        - For CD and CD_Object: use median to reduce the effect of outliers
        """
        per_category_values = []

        for category in tqdm(categories, desc=f"Sample {sample_num}, N={num_images}, {metric_key}"):
            per_pred_values = []

            data_path = glob(
                os.path.join(eval_path, "eval", f"{category}_{num_images}_{sample_num}_ckpt{checkpoint}*.json")
            )[0]

            with open(data_path) as f:
                eval_data = json.load(f)

            for preds in eval_data.values():
                if metric_key in ["R_error", "CC_error"]:
                    vals = np.array(preds[pred_index][metric_key])
                    per_pred_values.append(np.mean(vals < threshold))
                else: 
                    per_pred_values.append(preds[pred_index][metric_key])

            # Aggregate over all predictions within this category
            per_category_values.append(
                np.mean(per_pred_values) if metric_key in ["R_error", "CC_error"]
                else np.median(per_pred_values)  # CD or CD_Object — use median to filter outliers
            )

        if metric_key in ["R_error", "CC_error"]:
            return np.mean(per_category_values)
        else:
            return np.median(per_category_values)

    def aggregate_metric(categories, metric_key, num_images, threshold=None):
        """Aggregates one metric over 5 random samples per category and returns the final mean"""
        return np.mean([
            aggregate_per_category(categories, metric_key, num_images, sample_num, threshold=threshold)
            for sample_num in range(5)
        ])

    # Output containers
    all_seen_acc_R, all_seen_acc_CC = [], []
    all_seen_CD, all_seen_CD_Object = [], []
    all_unseen_acc_R, all_unseen_acc_CC = [], []
    all_unseen_CD, all_unseen_CD_Object = [], []

    for num_images in range(2, 9):
        # Seen categories
        all_seen_acc_R.append(
            aggregate_metric(TRAINING_CATEGORIES, "R_error", num_images, threshold=threshold_R)
        )
        all_seen_acc_CC.append(
            aggregate_metric(TRAINING_CATEGORIES, "CC_error", num_images, threshold=threshold_CC)
        )
        all_seen_CD.append(
            aggregate_metric(TRAINING_CATEGORIES, "CD", num_images)
        )
        all_seen_CD_Object.append(
            aggregate_metric(TRAINING_CATEGORIES, "CD_Object", num_images)
        )

        # Unseen categories
        all_unseen_acc_R.append(
            aggregate_metric(TEST_CATEGORIES, "R_error", num_images, threshold=threshold_R)
        )
        all_unseen_acc_CC.append(
            aggregate_metric(TEST_CATEGORIES, "CC_error", num_images, threshold=threshold_CC)
        )
        all_unseen_CD.append(
            aggregate_metric(TEST_CATEGORIES, "CD", num_images)
        )
        all_unseen_CD_Object.append(
            aggregate_metric(TEST_CATEGORIES, "CD_Object", num_images)
        )

    # Print the results in formatted rows
    print("N=           ", " ".join(f"{i: 5}" for i in range(2, 9)))
    print("Seen R       ", " ".join([f"{x:0.3f}" for x in all_seen_acc_R]))
    print("Seen CC      ", " ".join([f"{x:0.3f}" for x in all_seen_acc_CC]))
    print("Seen CD      ", " ".join([f"{x:0.3f}" for x in all_seen_CD]))
    print("Seen CD_Obj  ", " ".join([f"{x:0.3f}" for x in all_seen_CD_Object]))
    print("Unseen R     ", " ".join([f"{x:0.3f}" for x in all_unseen_acc_R]))
    print("Unseen CC    ", " ".join([f"{x:0.3f}" for x in all_unseen_acc_CC]))
    print("Unseen CD    ", " ".join([f"{x:0.3f}" for x in all_unseen_CD]))
    print("Unseen CD_Obj", " ".join([f"{x:0.3f}" for x in all_unseen_CD_Object]))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--eval_path", type=str, default=None)
    parser.add_argument("--use_submitit", action="store_true")
    parser.add_argument("--mode", type=str, default="test")
    args = parser.parse_args()

    eval_path = "output/multi_diffusionsfm_dense" if args.eval_path is None else args.eval_path
    use_submitit = args.use_submitit
    mode = args.mode

    evaluate_diffusionsfm(eval_path, use_submitit, mode)
    process_predictions(eval_path, 1)