Spaces:
Running
on
T4
Running
on
T4
File size: 6,016 Bytes
5e82535 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import torch
import random
import numpy as np
from tqdm.auto import tqdm
from diffusionsfm.utils.rays import compute_ndc_coordinates
def inference_ddim(
model,
images,
device,
crop_parameters=None,
eta=0,
num_inference_steps=100,
pbar=True,
stop_iteration=None,
num_patches_x=16,
num_patches_y=16,
visualize=False,
max_num_images=8,
seed=0,
):
"""
Implements DDIM-style inference.
To get multiple samples, batch the images multiple times.
Args:
model: Ray Diffuser.
images (torch.Tensor): (B, N, C, H, W).
patch_rays_gt (torch.Tensor): If provided, the patch rays which are ground
truth (B, N, P, 6).
eta (float, optional): Stochasticity coefficient. 0 is completely deterministic,
1 is equivalent to DDPM. (Default: 0)
num_inference_steps (int, optional): Number of inference steps. (Default: 100)
pbar (bool, optional): Whether to show progress bar. (Default: True)
"""
timesteps = model.noise_scheduler.compute_inference_timesteps(num_inference_steps)
batch_size = images.shape[0]
num_images = images.shape[1]
if isinstance(eta, list):
eta_0, eta_1 = float(eta[0]), float(eta[1])
else:
eta_0, eta_1 = 0, 0
# Fixing seed
if seed is not None:
torch.manual_seed(seed)
random.seed(seed)
np.random.seed(seed)
with torch.no_grad():
x_tau = torch.randn(
batch_size,
num_images,
model.ray_out if hasattr(model, "ray_out") else model.ray_dim,
num_patches_x,
num_patches_y,
device=device,
)
if visualize:
x_taus = [x_tau]
all_pred = []
noise_samples = []
image_features = model.feature_extractor(images, autoresize=True)
if model.append_ndc:
ndc_coordinates = compute_ndc_coordinates(
crop_parameters=crop_parameters,
no_crop_param_device="cpu",
num_patches_x=model.width,
num_patches_y=model.width,
distortion_coeffs=None,
)[..., :2].to(device)
ndc_coordinates = ndc_coordinates.permute(0, 1, 4, 2, 3)
else:
ndc_coordinates = None
if stop_iteration is None:
loop = range(len(timesteps))
else:
loop = range(len(timesteps) - stop_iteration + 1)
loop = tqdm(loop) if pbar else loop
for t in loop:
tau = timesteps[t]
if tau > 0 and eta_1 > 0:
z = torch.randn(
batch_size,
num_images,
model.ray_out if hasattr(model, "ray_out") else model.ray_dim,
num_patches_x,
num_patches_y,
device=device,
)
else:
z = 0
alpha = model.noise_scheduler.alphas_cumprod[tau]
if tau > 0:
tau_prev = timesteps[t + 1]
alpha_prev = model.noise_scheduler.alphas_cumprod[tau_prev]
else:
alpha_prev = torch.tensor(1.0, device=device).float()
sigma_t = (
torch.sqrt((1 - alpha_prev) / (1 - alpha))
* torch.sqrt(1 - alpha / alpha_prev)
)
if num_images > max_num_images:
eps_pred = torch.zeros_like(x_tau)
noise_sample = torch.zeros_like(x_tau)
# Randomly split image indices (excluding index 0), then prepend 0 to each split
indices_split = torch.split(
torch.randperm(num_images - 1) + 1, max_num_images - 1
)
for indices in indices_split:
indices = torch.cat((torch.tensor([0]), indices)) # Ensure index 0 is always included
eps_pred_ind, noise_sample_ind = model(
features=image_features[:, indices],
rays_noisy=x_tau[:, indices],
t=int(tau),
ndc_coordinates=ndc_coordinates[:, indices],
indices=indices,
)
eps_pred[:, indices] += eps_pred_ind
if noise_sample_ind is not None:
noise_sample[:, indices] += noise_sample_ind
# Average over splits for the shared reference index (0)
eps_pred[:, 0] /= len(indices_split)
noise_sample[:, 0] /= len(indices_split)
else:
eps_pred, noise_sample = model(
features=image_features,
rays_noisy=x_tau,
t=int(tau),
ndc_coordinates=ndc_coordinates,
)
if model.use_homogeneous:
p1 = eps_pred[:, :, :4]
p2 = eps_pred[:, :, 4:]
c1 = torch.linalg.norm(p1, dim=2, keepdim=True)
c2 = torch.linalg.norm(p2, dim=2, keepdim=True)
eps_pred[:, :, :4] = p1 / c1
eps_pred[:, :, 4:] = p2 / c2
if visualize:
all_pred.append(eps_pred.clone())
noise_samples.append(noise_sample)
# TODO: Can simplify this a lot
x0_pred = eps_pred.clone()
eps_pred = (x_tau - torch.sqrt(alpha) * eps_pred) / torch.sqrt(
1 - alpha
)
dir_x_tau = torch.sqrt(1 - alpha_prev - eta_0*sigma_t**2) * eps_pred
noise = eta_1 * sigma_t * z
new_x_tau = torch.sqrt(alpha_prev) * x0_pred + dir_x_tau + noise
x_tau = new_x_tau
if visualize:
x_taus.append(x_tau.detach().clone())
if visualize:
return x_tau, x_taus, all_pred, noise_samples
return x_tau
|