Spaces:
Running
on
T4
Running
on
T4
File size: 11,274 Bytes
4562a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import ipdb # noqa: F401
import numpy as np
import torch
import torch.nn as nn
from diffusionsfm.model.dit import DiT
from diffusionsfm.model.feature_extractors import PretrainedVAE, SpatialDino
from diffusionsfm.model.blocks import _make_fusion_block, _make_scratch
from diffusionsfm.model.scheduler import NoiseScheduler
# functional implementation
def nearest_neighbor_upsample(x: torch.Tensor, scale_factor: int):
"""Upsample {x} (NCHW) by scale factor {scale_factor} using nearest neighbor interpolation."""
s = scale_factor
return (
x.reshape(*x.shape, 1, 1)
.expand(*x.shape, s, s)
.transpose(-2, -3)
.reshape(*x.shape[:2], *(s * hw for hw in x.shape[2:]))
)
class ProjectReadout(nn.Module):
def __init__(self, in_features, start_index=1):
super(ProjectReadout, self).__init__()
self.start_index = start_index
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
def forward(self, x):
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
features = torch.cat((x[:, self.start_index :], readout), -1)
return self.project(features)
class RayDiffuserDPT(nn.Module):
def __init__(
self,
model_type="dit",
depth=8,
width=16,
hidden_size=1152,
P=1,
max_num_images=1,
noise_scheduler=None,
freeze_encoder=True,
feature_extractor="dino",
append_ndc=True,
use_unconditional=False,
diffuse_depths=False,
depth_resolution=1,
encoder_features=False,
use_homogeneous=False,
freeze_transformer=False,
cond_depth_mask=False,
):
super().__init__()
if noise_scheduler is None:
self.noise_scheduler = NoiseScheduler()
else:
self.noise_scheduler = noise_scheduler
self.diffuse_depths = diffuse_depths
self.depth_resolution = depth_resolution
self.use_homogeneous = use_homogeneous
self.ray_dim = 3
if self.use_homogeneous:
self.ray_dim += 1
self.ray_dim += self.ray_dim * self.depth_resolution**2
if self.diffuse_depths:
self.ray_dim += 1
self.append_ndc = append_ndc
self.width = width
self.max_num_images = max_num_images
self.model_type = model_type
self.use_unconditional = use_unconditional
self.cond_depth_mask = cond_depth_mask
self.encoder_features = encoder_features
if feature_extractor == "dino":
self.feature_extractor = SpatialDino(
freeze_weights=freeze_encoder,
num_patches_x=width,
num_patches_y=width,
activation_hooks=self.encoder_features,
)
self.feature_dim = self.feature_extractor.feature_dim
elif feature_extractor == "vae":
self.feature_extractor = PretrainedVAE(
freeze_weights=freeze_encoder, num_patches_x=width, num_patches_y=width
)
self.feature_dim = self.feature_extractor.feature_dim
else:
raise Exception(f"Unknown feature extractor {feature_extractor}")
if self.use_unconditional:
self.register_parameter(
"null_token", nn.Parameter(torch.randn(self.feature_dim, 1, 1))
)
self.input_dim = self.feature_dim * 2
if self.append_ndc:
self.input_dim += 2
if model_type == "dit":
self.ray_predictor = DiT(
in_channels=self.input_dim,
out_channels=self.ray_dim,
width=width,
depth=depth,
hidden_size=hidden_size,
max_num_images=max_num_images,
P=P,
)
if freeze_transformer:
for param in self.ray_predictor.parameters():
param.requires_grad = False
# Fusion blocks
self.f = 256
if self.encoder_features:
feature_lens = [
self.feature_extractor.feature_dim,
self.feature_extractor.feature_dim,
self.ray_predictor.hidden_size,
self.ray_predictor.hidden_size,
]
else:
feature_lens = [self.ray_predictor.hidden_size] * 4
self.scratch = _make_scratch(feature_lens, 256, groups=1, expand=False)
self.scratch.refinenet1 = _make_fusion_block(
self.f, use_bn=False, use_ln=False, dpt_time=True, resolution=128
)
self.scratch.refinenet2 = _make_fusion_block(
self.f, use_bn=False, use_ln=False, dpt_time=True, resolution=64
)
self.scratch.refinenet3 = _make_fusion_block(
self.f, use_bn=False, use_ln=False, dpt_time=True, resolution=32
)
self.scratch.refinenet4 = _make_fusion_block(
self.f, use_bn=False, use_ln=False, dpt_time=True, resolution=16
)
self.scratch.input_conv = nn.Conv2d(
self.ray_dim + int(self.cond_depth_mask),
self.feature_dim,
kernel_size=16,
stride=16,
padding=0
)
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(self.f, self.f // 2, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(),
nn.Conv2d(self.f // 2, 32, kernel_size=3, stride=1, padding=1),
nn.LeakyReLU(),
nn.Conv2d(32, self.ray_dim, kernel_size=1, stride=1, padding=0),
nn.Identity(),
)
if self.encoder_features:
self.project_opers = nn.ModuleList([
ProjectReadout(in_features=self.feature_extractor.feature_dim),
ProjectReadout(in_features=self.feature_extractor.feature_dim),
])
def forward_noise(
self, x, t, epsilon=None, zero_out_mask=None
):
"""
Applies forward diffusion (adds noise) to the input.
If a mask is provided, the noise is only applied to the masked inputs.
"""
t = t.reshape(-1, 1, 1, 1, 1)
if epsilon is None:
epsilon = torch.randn_like(x)
else:
epsilon = epsilon.reshape(x.shape)
alpha_bar = self.noise_scheduler.alphas_cumprod[t]
x_noise = torch.sqrt(alpha_bar) * x + torch.sqrt(1 - alpha_bar) * epsilon
if zero_out_mask is not None and self.cond_depth_mask:
x_noise = zero_out_mask * x_noise
return x_noise, epsilon
def forward(
self,
features=None,
images=None,
rays=None,
rays_noisy=None,
t=None,
ndc_coordinates=None,
unconditional_mask=None,
encoder_patches=16,
depth_mask=None,
multiview_unconditional=False,
indices=None,
):
"""
Args:
images: (B, N, 3, H, W).
t: (B,).
rays: (B, N, 6, H, W).
rays_noisy: (B, N, 6, H, W).
ndc_coordinates: (B, N, 2, H, W).
unconditional_mask: (B, N) or (B,). Should be 1 for unconditional samples
and 0 else.
"""
if features is None:
# VAE expects 256x256 images while DINO expects 224x224 images.
# Both feature extractors support autoresize=True, but ideally we should
# set this to be false and handle in the dataloader.
features = self.feature_extractor(images, autoresize=True)
B = features.shape[0]
if unconditional_mask is not None and self.use_unconditional:
null_token = self.null_token.reshape(1, 1, self.feature_dim, 1, 1)
unconditional_mask = unconditional_mask.reshape(B, -1, 1, 1, 1)
features = (
features * (1 - unconditional_mask) + null_token * unconditional_mask
)
if isinstance(t, int) or isinstance(t, np.int64):
t = torch.ones(1, dtype=int).to(features.device) * t
else:
t = t.reshape(B)
if rays_noisy is None:
if self.cond_depth_mask:
rays_noisy, epsilon = self.forward_noise(
rays, t, zero_out_mask=depth_mask.unsqueeze(2)
)
else:
rays_noisy, epsilon = self.forward_noise(
rays, t
)
else:
epsilon = None
# DOWNSAMPLE RAYS
B, N, C, H, W = rays_noisy.shape
if self.cond_depth_mask:
if depth_mask is None:
depth_mask = torch.ones_like(rays_noisy[:, :, 0])
ray_repr = torch.cat([rays_noisy, depth_mask.unsqueeze(2)], dim=2)
else:
ray_repr = rays_noisy
ray_repr = self.scratch.input_conv(ray_repr.reshape(B * N, -1, H, W))
_, CP, HP, WP = ray_repr.shape
ray_repr = ray_repr.reshape(B, N, CP, HP, WP)
scene_features = torch.cat([features, ray_repr], dim=2)
if self.append_ndc:
scene_features = torch.cat([scene_features, ndc_coordinates], dim=2)
# DIT FORWARD PASS
activations = self.ray_predictor(
scene_features,
t,
return_dpt_activations=True,
multiview_unconditional=multiview_unconditional,
)
# PROJECT ENCODER ACTIVATIONS & RESHAPE
if self.encoder_features:
for i in range(2):
name = f"encoder{i+1}"
if indices is not None:
act = self.feature_extractor.activations[name][indices]
else:
act = self.feature_extractor.activations[name]
act = self.project_opers[i](act).permute(0, 2, 1)
act = act.reshape(
(
B * N,
self.feature_extractor.feature_dim,
encoder_patches,
encoder_patches,
)
)
activations[i] = act
# UPSAMPLE ACTIVATIONS
for i, act in enumerate(activations):
k = 3 - i
activations[i] = nearest_neighbor_upsample(act, 2**k)
# FUSION BLOCKS
layer_1_rn = self.scratch.layer1_rn(activations[0])
layer_2_rn = self.scratch.layer2_rn(activations[1])
layer_3_rn = self.scratch.layer3_rn(activations[2])
layer_4_rn = self.scratch.layer4_rn(activations[3])
# RESHAPE TIMESTEPS
if t.shape[0] == B:
t = t.unsqueeze(-1).repeat((1, N)).reshape(B * N)
elif t.shape[0] == 1 and B > 1:
t = t.repeat((B * N))
else:
assert False
path_4 = self.scratch.refinenet4(layer_4_rn, t=t)
path_3 = self.scratch.refinenet3(path_4, activation=layer_3_rn, t=t)
path_2 = self.scratch.refinenet2(path_3, activation=layer_2_rn, t=t)
path_1 = self.scratch.refinenet1(path_2, activation=layer_1_rn, t=t)
epsilon_pred = self.scratch.output_conv(path_1)
epsilon_pred = epsilon_pred.reshape((B, N, C, H, W))
return epsilon_pred, epsilon
|