File size: 14,276 Bytes
4562a06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------

import math

import ipdb  # noqa: F401
import numpy as np
import torch
import torch.nn as nn
from timm.models.vision_transformer import Attention, Mlp, PatchEmbed
from diffusionsfm.model.memory_efficient_attention import MEAttention


def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################


class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period)
            * torch.arange(start=0, end=half, dtype=torch.float32)
            / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat(
                [embedding, torch.zeros_like(embedding[:, :1])], dim=-1
            )
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


#################################################################################
#                                 Core DiT Model                                #
#################################################################################


class DiTBlock(nn.Module):
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """

    def __init__(
        self,
        hidden_size,
        num_heads,
        mlp_ratio=4.0,
        use_xformers_attention=False,
        **block_kwargs
    ):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        attn = MEAttention if use_xformers_attention else Attention
        self.attn = attn(
            hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs
        )
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)

        def approx_gelu():
            return nn.GELU(approximate="tanh")

        self.mlp = Mlp(
            in_features=hidden_size,
            hidden_features=mlp_hidden_dim,
            act_layer=approx_gelu,
            drop=0,
        )
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        (
            shift_msa,
            scale_msa,
            gate_msa,
            shift_mlp,
            scale_mlp,
            gate_mlp,
        ) = self.adaLN_modulation(c).chunk(6, dim=1)
        x = x + gate_msa.unsqueeze(1) * self.attn(
            modulate(self.norm1(x), shift_msa, scale_msa)
        )
        x = x + gate_mlp.unsqueeze(1) * self.mlp(
            modulate(self.norm2(x), shift_mlp, scale_mlp)
        )
        return x


class FinalLayer(nn.Module):
    """
    The final layer of DiT.
    """

    def __init__(self, hidden_size, patch_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(
            hidden_size, patch_size * patch_size * out_channels, bias=True
        )
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class DiT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """

    def __init__(
        self,
        in_channels=442,
        out_channels=6,
        width=16,
        hidden_size=1152,
        depth=8,
        num_heads=16,
        mlp_ratio=4.0,
        max_num_images=8,
        P=1,
        within_image=False,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.width = width
        self.hidden_size = hidden_size
        self.max_num_images = max_num_images
        self.P = P
        self.within_image = within_image

        # self.x_embedder = nn.Linear(in_channels, hidden_size)
        # self.x_embedder = PatchEmbed(in_channels, hidden_size, kernel_size=P, hidden_size=P)
        self.x_embedder = PatchEmbed(
            img_size=self.width,
            patch_size=self.P,
            in_chans=in_channels,
            embed_dim=hidden_size,
            bias=True,
            flatten=False,
        )
        self.x_pos_enc = FeaturePositionalEncoding(
            max_num_images, hidden_size, width**2, P=self.P
        )
        self.t_embedder = TimestepEmbedder(hidden_size)

        try:
            import xformers

            use_xformers_attention = True
        except ImportError:
            # xformers not available
            use_xformers_attention = False

        self.blocks = nn.ModuleList(
            [
                DiTBlock(
                    hidden_size,
                    num_heads,
                    mlp_ratio=mlp_ratio,
                    use_xformers_attention=use_xformers_attention,
                )
                for _ in range(depth)
            ]
        )
        self.final_layer = FinalLayer(hidden_size, P, out_channels)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)

        self.apply(_basic_init)

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.x_embedder.proj.bias, 0)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        # nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        # nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        # nn.init.constant_(self.final_layer.linear.weight, 0)
        # nn.init.constant_(self.final_layer.linear.bias, 0)

    def unpatchify(self, x):
        """
        x: (N, T, patch_size**2 * C)
        imgs: (N, H, W, C)
        """
        c = self.out_channels
        p = self.x_embedder.patch_size[0]
        h = w = int(x.shape[1] ** 0.5)

        # print("unpatchify", c, p, h, w, x.shape)
        # assert h * w == x.shape[2]

        x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
        x = torch.einsum("nhwpqc->nhpwqc", x)
        imgs = x.reshape(shape=(x.shape[0], h * p, h * p, c))
        return imgs

    def forward(
        self,
        x,
        t,
        return_dpt_activations=False,
        multiview_unconditional=False,
    ):
        """

        Args:
            x: Image/Ray features (B, N, C, H, W).
            t: Timesteps (N,).

        Returns:
            (B, N, D, H, W)
        """
        B, N, c, h, w = x.shape
        P = self.P

        x = x.reshape((B * N, c, h, w))  # (B * N, C, H, W)
        x = self.x_embedder(x)  # (B * N, C, H / P, W / P)

        x = x.permute(0, 2, 3, 1)  # (B * N, H / P, W / P, C)
        # (B, N, H / P, W / P, C)
        x = x.reshape((B, N, h // P, w // P, self.hidden_size))
        x = self.x_pos_enc(x)  # (B, N, H * W / P ** 2, C)
        # TODO: fix positional encoding to work with (N, C, H, W) format.

        # Eval time, we get a scalar t
        if x.shape[0] != t.shape[0] and t.shape[0] == 1:
            t = t.repeat_interleave(B)

        if self.within_image or multiview_unconditional:
            t_within = t.repeat_interleave(N)
            t_within = self.t_embedder(t_within)

        t = self.t_embedder(t)

        dpt_activations = []
        for i, block in enumerate(self.blocks):
            # Within image block
            if (self.within_image and i % 2 == 0) or multiview_unconditional:
                x = x.reshape((B * N, h * w // P**2, self.hidden_size))
                x = block(x, t_within)

            # All patches block
            # Final layer is an all patches layer
            else:
                x = x.reshape((B, N * h * w // P**2, self.hidden_size))
                x = block(x, t)  # (N, T, D)

            if return_dpt_activations and i % 4 == 3:
                x_prime = x.reshape(B, N, h, w, self.hidden_size)
                x_prime = x.reshape(B * N, h, w, self.hidden_size)
                x_prime = x_prime.permute((0, 3, 1, 2))
                dpt_activations.append(x_prime)

        # Reshape the output back to original shape
        if multiview_unconditional:
            x = x.reshape((B, N * h * w // P**2, self.hidden_size))

        # (B, N * H * W / P ** 2, D)
        x = self.final_layer(
            x, t
        )  # (B, N * H * W / P ** 2,  6 * P ** 2) or (N, T, patch_size ** 2 * out_channels)

        x = x.reshape((B * N, w * w // P**2, self.out_channels * P**2))
        x = self.unpatchify(x)  # (B * N, H, W, C)
        x = x.reshape((B, N) + x.shape[1:])
        x = x.permute(0, 1, 4, 2, 3)  # (B, N, C, H, W)

        if return_dpt_activations:
            return dpt_activations[:4]

        return x


class FeaturePositionalEncoding(nn.Module):
    def _get_sinusoid_encoding_table(self, n_position, d_hid, base):
        """Sinusoid position encoding table"""

        def get_position_angle_vec(position):
            return [
                position / np.power(base, 2 * (hid_j // 2) / d_hid)
                for hid_j in range(d_hid)
            ]

        sinusoid_table = np.array(
            [get_position_angle_vec(pos_i) for pos_i in range(n_position)]
        )
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

        return torch.FloatTensor(sinusoid_table).unsqueeze(0)

    def __init__(self, max_num_images=8, feature_dim=1152, num_patches=256, P=1):
        super().__init__()
        self.max_num_images = max_num_images
        self.feature_dim = feature_dim
        self.P = P
        self.num_patches = num_patches // self.P**2

        self.register_buffer(
            "image_pos_table",
            self._get_sinusoid_encoding_table(
                self.max_num_images, self.feature_dim, 10000
            ),
        )

        self.register_buffer(
            "token_pos_table",
            self._get_sinusoid_encoding_table(
                self.num_patches, self.feature_dim, 70007
            ),
        )

    def forward(self, x):
        batch_size = x.shape[0]
        num_images = x.shape[1]

        x = x.reshape(batch_size, num_images, self.num_patches, self.feature_dim)

        # To encode image index
        pe1 = self.image_pos_table[:, :num_images].clone().detach()
        pe1 = pe1.reshape((1, num_images, 1, self.feature_dim))
        pe1 = pe1.repeat((batch_size, 1, self.num_patches, 1))

        # To encode patch index
        pe2 = self.token_pos_table.clone().detach()
        pe2 = pe2.reshape((1, 1, self.num_patches, self.feature_dim))
        pe2 = pe2.repeat((batch_size, num_images, 1, 1))

        x_pe = x + pe1 + pe2
        x_pe = x_pe.reshape(
            (batch_size, num_images * self.num_patches, self.feature_dim)
        )

        return x_pe

    def forward_unet(self, x, B, N):
        D = int(self.num_patches**0.5)

        # x should be (B, N, T, D, D)
        x = x.permute((0, 2, 3, 1))
        x = x.reshape(B, N, self.num_patches, self.feature_dim)

        # To encode image index
        pe1 = self.image_pos_table[:, :N].clone().detach()
        pe1 = pe1.reshape((1, N, 1, self.feature_dim))
        pe1 = pe1.repeat((B, 1, self.num_patches, 1))

        # To encode patch index
        pe2 = self.token_pos_table.clone().detach()
        pe2 = pe2.reshape((1, 1, self.num_patches, self.feature_dim))
        pe2 = pe2.repeat((B, N, 1, 1))

        x_pe = x + pe1 + pe2
        x_pe = x_pe.reshape((B * N, D, D, self.feature_dim))
        x_pe = x_pe.permute((0, 3, 1, 2))

        return x_pe