Spaces:
Running
on
T4
Running
on
T4
File size: 14,276 Bytes
4562a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import math
import ipdb # noqa: F401
import numpy as np
import torch
import torch.nn as nn
from timm.models.vision_transformer import Attention, Mlp, PatchEmbed
from diffusionsfm.model.memory_efficient_attention import MEAttention
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
#################################################################################
# Embedding Layers for Timesteps and Class Labels #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period)
* torch.arange(start=0, end=half, dtype=torch.float32)
/ half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat(
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
)
return embedding
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
#################################################################################
# Core DiT Model #
#################################################################################
class DiTBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(
self,
hidden_size,
num_heads,
mlp_ratio=4.0,
use_xformers_attention=False,
**block_kwargs
):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
attn = MEAttention if use_xformers_attention else Attention
self.attn = attn(
hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs
)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
mlp_hidden_dim = int(hidden_size * mlp_ratio)
def approx_gelu():
return nn.GELU(approximate="tanh")
self.mlp = Mlp(
in_features=hidden_size,
hidden_features=mlp_hidden_dim,
act_layer=approx_gelu,
drop=0,
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)
)
def forward(self, x, c):
(
shift_msa,
scale_msa,
gate_msa,
shift_mlp,
scale_mlp,
gate_mlp,
) = self.adaLN_modulation(c).chunk(6, dim=1)
x = x + gate_msa.unsqueeze(1) * self.attn(
modulate(self.norm1(x), shift_msa, scale_msa)
)
x = x + gate_mlp.unsqueeze(1) * self.mlp(
modulate(self.norm2(x), shift_mlp, scale_mlp)
)
return x
class FinalLayer(nn.Module):
"""
The final layer of DiT.
"""
def __init__(self, hidden_size, patch_size, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(
hidden_size, patch_size * patch_size * out_channels, bias=True
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
)
def forward(self, x, c):
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
return x
class DiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
in_channels=442,
out_channels=6,
width=16,
hidden_size=1152,
depth=8,
num_heads=16,
mlp_ratio=4.0,
max_num_images=8,
P=1,
within_image=False,
):
super().__init__()
self.num_heads = num_heads
self.in_channels = in_channels
self.out_channels = out_channels
self.width = width
self.hidden_size = hidden_size
self.max_num_images = max_num_images
self.P = P
self.within_image = within_image
# self.x_embedder = nn.Linear(in_channels, hidden_size)
# self.x_embedder = PatchEmbed(in_channels, hidden_size, kernel_size=P, hidden_size=P)
self.x_embedder = PatchEmbed(
img_size=self.width,
patch_size=self.P,
in_chans=in_channels,
embed_dim=hidden_size,
bias=True,
flatten=False,
)
self.x_pos_enc = FeaturePositionalEncoding(
max_num_images, hidden_size, width**2, P=self.P
)
self.t_embedder = TimestepEmbedder(hidden_size)
try:
import xformers
use_xformers_attention = True
except ImportError:
# xformers not available
use_xformers_attention = False
self.blocks = nn.ModuleList(
[
DiTBlock(
hidden_size,
num_heads,
mlp_ratio=mlp_ratio,
use_xformers_attention=use_xformers_attention,
)
for _ in range(depth)
]
)
self.final_layer = FinalLayer(hidden_size, P, out_channels)
self.initialize_weights()
def initialize_weights(self):
# Initialize transformer layers:
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
# Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
w = self.x_embedder.proj.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
nn.init.constant_(self.x_embedder.proj.bias, 0)
# Initialize timestep embedding MLP:
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
# Zero-out adaLN modulation layers in DiT blocks:
for block in self.blocks:
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
# Zero-out output layers:
# nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
# nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
# nn.init.constant_(self.final_layer.linear.weight, 0)
# nn.init.constant_(self.final_layer.linear.bias, 0)
def unpatchify(self, x):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.out_channels
p = self.x_embedder.patch_size[0]
h = w = int(x.shape[1] ** 0.5)
# print("unpatchify", c, p, h, w, x.shape)
# assert h * w == x.shape[2]
x = x.reshape(shape=(x.shape[0], h, w, p, p, c))
x = torch.einsum("nhwpqc->nhpwqc", x)
imgs = x.reshape(shape=(x.shape[0], h * p, h * p, c))
return imgs
def forward(
self,
x,
t,
return_dpt_activations=False,
multiview_unconditional=False,
):
"""
Args:
x: Image/Ray features (B, N, C, H, W).
t: Timesteps (N,).
Returns:
(B, N, D, H, W)
"""
B, N, c, h, w = x.shape
P = self.P
x = x.reshape((B * N, c, h, w)) # (B * N, C, H, W)
x = self.x_embedder(x) # (B * N, C, H / P, W / P)
x = x.permute(0, 2, 3, 1) # (B * N, H / P, W / P, C)
# (B, N, H / P, W / P, C)
x = x.reshape((B, N, h // P, w // P, self.hidden_size))
x = self.x_pos_enc(x) # (B, N, H * W / P ** 2, C)
# TODO: fix positional encoding to work with (N, C, H, W) format.
# Eval time, we get a scalar t
if x.shape[0] != t.shape[0] and t.shape[0] == 1:
t = t.repeat_interleave(B)
if self.within_image or multiview_unconditional:
t_within = t.repeat_interleave(N)
t_within = self.t_embedder(t_within)
t = self.t_embedder(t)
dpt_activations = []
for i, block in enumerate(self.blocks):
# Within image block
if (self.within_image and i % 2 == 0) or multiview_unconditional:
x = x.reshape((B * N, h * w // P**2, self.hidden_size))
x = block(x, t_within)
# All patches block
# Final layer is an all patches layer
else:
x = x.reshape((B, N * h * w // P**2, self.hidden_size))
x = block(x, t) # (N, T, D)
if return_dpt_activations and i % 4 == 3:
x_prime = x.reshape(B, N, h, w, self.hidden_size)
x_prime = x.reshape(B * N, h, w, self.hidden_size)
x_prime = x_prime.permute((0, 3, 1, 2))
dpt_activations.append(x_prime)
# Reshape the output back to original shape
if multiview_unconditional:
x = x.reshape((B, N * h * w // P**2, self.hidden_size))
# (B, N * H * W / P ** 2, D)
x = self.final_layer(
x, t
) # (B, N * H * W / P ** 2, 6 * P ** 2) or (N, T, patch_size ** 2 * out_channels)
x = x.reshape((B * N, w * w // P**2, self.out_channels * P**2))
x = self.unpatchify(x) # (B * N, H, W, C)
x = x.reshape((B, N) + x.shape[1:])
x = x.permute(0, 1, 4, 2, 3) # (B, N, C, H, W)
if return_dpt_activations:
return dpt_activations[:4]
return x
class FeaturePositionalEncoding(nn.Module):
def _get_sinusoid_encoding_table(self, n_position, d_hid, base):
"""Sinusoid position encoding table"""
def get_position_angle_vec(position):
return [
position / np.power(base, 2 * (hid_j // 2) / d_hid)
for hid_j in range(d_hid)
]
sinusoid_table = np.array(
[get_position_angle_vec(pos_i) for pos_i in range(n_position)]
)
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.FloatTensor(sinusoid_table).unsqueeze(0)
def __init__(self, max_num_images=8, feature_dim=1152, num_patches=256, P=1):
super().__init__()
self.max_num_images = max_num_images
self.feature_dim = feature_dim
self.P = P
self.num_patches = num_patches // self.P**2
self.register_buffer(
"image_pos_table",
self._get_sinusoid_encoding_table(
self.max_num_images, self.feature_dim, 10000
),
)
self.register_buffer(
"token_pos_table",
self._get_sinusoid_encoding_table(
self.num_patches, self.feature_dim, 70007
),
)
def forward(self, x):
batch_size = x.shape[0]
num_images = x.shape[1]
x = x.reshape(batch_size, num_images, self.num_patches, self.feature_dim)
# To encode image index
pe1 = self.image_pos_table[:, :num_images].clone().detach()
pe1 = pe1.reshape((1, num_images, 1, self.feature_dim))
pe1 = pe1.repeat((batch_size, 1, self.num_patches, 1))
# To encode patch index
pe2 = self.token_pos_table.clone().detach()
pe2 = pe2.reshape((1, 1, self.num_patches, self.feature_dim))
pe2 = pe2.repeat((batch_size, num_images, 1, 1))
x_pe = x + pe1 + pe2
x_pe = x_pe.reshape(
(batch_size, num_images * self.num_patches, self.feature_dim)
)
return x_pe
def forward_unet(self, x, B, N):
D = int(self.num_patches**0.5)
# x should be (B, N, T, D, D)
x = x.permute((0, 2, 3, 1))
x = x.reshape(B, N, self.num_patches, self.feature_dim)
# To encode image index
pe1 = self.image_pos_table[:, :N].clone().detach()
pe1 = pe1.reshape((1, N, 1, self.feature_dim))
pe1 = pe1.repeat((B, 1, self.num_patches, 1))
# To encode patch index
pe2 = self.token_pos_table.clone().detach()
pe2 = pe2.reshape((1, 1, self.num_patches, self.feature_dim))
pe2 = pe2.repeat((B, N, 1, 1))
x_pe = x + pe1 + pe2
x_pe = x_pe.reshape((B * N, D, D, self.feature_dim))
x_pe = x_pe.permute((0, 3, 1, 2))
return x_pe
|