Spaces:
Running
on
T4
Running
on
T4
File size: 8,178 Bytes
4562a06 2469ca1 4562a06 2469ca1 4562a06 2469ca1 4562a06 2469ca1 4562a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import os
import time
import shutil
import argparse
import functools
import torch
import torchvision
from PIL import Image
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import trimesh
from diffusionsfm.dataset.custom import CustomDataset
from diffusionsfm.dataset.co3d_v2 import unnormalize_image
from diffusionsfm.inference.load_model import load_model
from diffusionsfm.inference.predict import predict_cameras
from diffusionsfm.utils.visualization import add_scene_cam
def info_fn():
gr.Info("Data preprocessing completed!")
def get_select_index(evt: gr.SelectData):
selected = evt.index
return examples_full[selected][0], selected
def check_img_input(control_image):
if control_image is None:
raise gr.Error("Please select or upload an input image.")
def preprocess(args, image_block, selected):
cate_name = time.strftime("%m%d_%H%M%S") if selected is None else examples_list[selected]
demo_dir = os.path.join(args.output_dir, f'demo/{cate_name}')
shutil.rmtree(demo_dir, ignore_errors=True)
os.makedirs(os.path.join(demo_dir, 'source'), exist_ok=True)
os.makedirs(os.path.join(demo_dir, 'processed'), exist_ok=True)
dataset = CustomDataset(image_block)
batch = dataset.get_data()
batch['cate_name'] = cate_name
processed_image_block = []
for i, file_path in enumerate(image_block):
file_name = os.path.basename(file_path)
raw_img = Image.open(file_path)
try:
raw_img.save(os.path.join(demo_dir, 'source', file_name))
except OSError:
raw_img.convert('RGB').save(os.path.join(demo_dir, 'source', file_name))
batch['image_for_vis'][i].save(os.path.join(demo_dir, 'processed', file_name))
processed_image_block.append(os.path.join(demo_dir, 'processed', file_name))
return processed_image_block, batch
def transform_cameras(pred_cameras):
num_cameras = pred_cameras.R.shape[0]
Rs = pred_cameras.R.transpose(1, 2).detach()
ts = pred_cameras.T.unsqueeze(-1).detach()
c2ws = torch.zeros(num_cameras, 4, 4)
c2ws[:, :3, :3] = Rs
c2ws[:, :3, -1:] = ts
c2ws[:, 3, 3] = 1
c2ws[:, :2] *= -1 # PyTorch3D to OpenCV
c2ws = torch.linalg.inv(c2ws).numpy()
return c2ws
def run_inference(args, cfg, model, batch):
device = args.device
images = batch["image"].to(device)
crop_parameters = batch["crop_parameters"].to(device)
(pred_cameras, pred_rays), _ = predict_cameras(
model=model,
images=images,
device=device,
crop_parameters=crop_parameters,
stop_iteration=90,
num_patches_x=cfg.training.full_num_patches_x,
num_patches_y=cfg.training.full_num_patches_y,
calculate_intrinsics=True,
max_num_images=8,
mode="segment",
return_rays=True,
use_homogeneous=True,
seed=0,
)
# Unnormalize and resize input images
images = unnormalize_image(images, return_numpy=False, return_int=False)
images = torchvision.transforms.Resize(256)(images)
rgbs = images.permute(0, 2, 3, 1).contiguous().view(-1, 3)
xyzs = pred_rays.get_segments().view(-1, 3).cpu()
# Create point cloud and scene
scene = trimesh.Scene()
point_cloud = trimesh.points.PointCloud(xyzs, colors=rgbs)
scene.add_geometry(point_cloud)
# Add predicted cameras to the scene
num_images = images.shape[0]
c2ws = transform_cameras(pred_cameras)
cmap = plt.get_cmap("hsv")
for i, c2w in enumerate(c2ws):
color_rgb = (np.array(cmap(i / num_images))[:3] * 255).astype(int)
add_scene_cam(
scene=scene,
c2w=c2w,
edge_color=color_rgb,
image=None,
focal=None,
imsize=(256, 256),
screen_width=0.1
)
# Export GLB
cate_name = batch['cate_name']
output_path = os.path.join(args.output_dir, f'demo/{cate_name}/{cate_name}.glb')
scene.export(output_path)
return output_path
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--output_dir', default='output/multi_diffusionsfm_dense', type=str, help='Output directory')
parser.add_argument('--device', default='cuda', type=str, help='Device to run inference on')
args = parser.parse_args()
_TITLE = "DiffusionSfM: Predicting Structure and Motion via Ray Origin and Endpoint Diffusion"
_DESCRIPTION = """
<div>
<a style="display:inline-block" href="https://qitaozhao.github.io/DiffusionSfM"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href='https://github.com/QitaoZhao/DiffusionSfM'><img src='https://img.shields.io/github/stars/QitaoZhao/DiffusionSfM?style=social'/></a>
</div>
DiffusionSfM learns to predict scene geometry and camera poses as pixel-wise ray origins and endpoints using a denoising diffusion model.
"""
# Load demo examples
examples_list = ["kew_gardens_ruined_arch", "jellycat", "kotor_cathedral", "jordan"]
examples_full = []
for example in examples_list:
folder = os.path.join(os.path.dirname(__file__), "data/demo", example)
examples = sorted(os.path.join(folder, x) for x in os.listdir(folder))
examples_full.append([examples])
model, cfg = load_model(args.output_dir, device=args.device)
print("Loaded DiffusionSfM model!")
preprocess = functools.partial(preprocess, args)
run_inference = functools.partial(run_inference, args, cfg, model)
with gr.Blocks(title=_TITLE, theme=gr.themes.Soft()) as demo:
gr.Markdown(f"# {_TITLE}")
gr.Markdown(_DESCRIPTION)
with gr.Row(variant='panel'):
with gr.Column(scale=2):
image_block = gr.Files(file_count="multiple", label="Upload Images")
gr.Markdown(
"You can run our model by either: (1) **Uploading images** above "
"or (2) selecting a **pre-collected example** below."
)
gallery = gr.Gallery(
value=[example[0][0] for example in examples_full],
label="Examples",
show_label=True,
columns=[4],
rows=[1],
object_fit="contain",
height="256",
)
selected = gr.State()
batch = gr.State()
preprocessed_data = gr.Gallery(
label="Preprocessed Images",
show_label=True,
columns=[4],
rows=[1],
object_fit="contain",
height="256",
)
with gr.Row(variant='panel'):
run_inference_btn = gr.Button("Run Inference")
with gr.Column(scale=4):
output_3D = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
height=520,
zoom_speed=0.5,
pan_speed=0.5,
label="3D Point Clouds and Recovered Cameras"
)
# Link image gallery selection
gallery.select(
fn=get_select_index,
inputs=None,
outputs=[image_block, selected]
).success(
fn=preprocess,
inputs=[image_block, selected],
outputs=[preprocessed_data, batch],
queue=False,
show_progress="full"
)
# Handle user uploads
image_block.upload(
preprocess,
inputs=[image_block],
outputs=[preprocessed_data, batch],
queue=False,
show_progress="full"
).success(info_fn, None, None)
# Run 3D reconstruction
run_inference_btn.click(
check_img_input,
inputs=[image_block],
queue=False
).success(
run_inference,
inputs=[batch],
outputs=[output_3D]
)
demo.queue().launch(share=True) |