Spaces:
Running
on
T4
Running
on
T4
import ipdb | |
import torch.nn as nn | |
from xformers.ops import memory_efficient_attention | |
class MEAttention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_norm=False, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
norm_layer=nn.LayerNorm, | |
): | |
super().__init__() | |
assert dim % num_heads == 0, "dim should be divisible by num_heads" | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.scale = self.head_dim**-0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity() | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = ( | |
self.qkv(x) | |
.reshape(B, N, 3, self.num_heads, self.head_dim) | |
.permute(2, 0, 3, 1, 4) | |
) | |
q, k, v = qkv.unbind(0) | |
q, k = self.q_norm(q), self.k_norm(k) | |
# MEA expects [B, N, H, D], whereas timm uses [B, H, N, D] | |
x = memory_efficient_attention( | |
q.transpose(1, 2), | |
k.transpose(1, 2), | |
v.transpose(1, 2), | |
scale=self.scale, | |
) | |
x = x.reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |