|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import torch |
|
import PIL.Image |
|
import scipy.io |
|
|
|
import kapture |
|
from kapture.io.csv import kapture_from_dir |
|
from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file |
|
|
|
from dust3r_visloc.datasets.utils import cam_to_world_from_kapture, get_resize_function, rescale_points3d |
|
from dust3r_visloc.datasets.base_dataset import BaseVislocDataset |
|
from dust3r.datasets.utils.transforms import ImgNorm |
|
from dust3r.utils.geometry import xy_grid, geotrf |
|
|
|
|
|
def read_alignments(path_to_alignment): |
|
aligns = {} |
|
with open(path_to_alignment, "r") as fid: |
|
while True: |
|
line = fid.readline() |
|
if not line: |
|
break |
|
if len(line) == 4: |
|
trans_nr = line[:-1] |
|
while line != 'After general icp:\n': |
|
line = fid.readline() |
|
line = fid.readline() |
|
p = [] |
|
for i in range(4): |
|
elems = line.split(' ') |
|
line = fid.readline() |
|
for e in elems: |
|
if len(e) != 0: |
|
p.append(float(e)) |
|
P = np.array(p).reshape(4, 4) |
|
aligns[trans_nr] = P |
|
return aligns |
|
|
|
|
|
class VislocInLoc(BaseVislocDataset): |
|
def __init__(self, root, pairsfile, topk=1): |
|
super().__init__() |
|
self.root = root |
|
self.topk = topk |
|
self.num_views = self.topk + 1 |
|
self.maxdim = None |
|
self.patch_size = None |
|
|
|
query_path = os.path.join(self.root, 'query') |
|
kdata_query = kapture_from_dir(query_path) |
|
assert kdata_query.records_camera is not None |
|
kdata_query_searchindex = {kdata_query.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) |
|
for timestamp, sensor_id in kdata_query.records_camera.key_pairs()} |
|
self.query_data = {'path': query_path, 'kdata': kdata_query, 'searchindex': kdata_query_searchindex} |
|
|
|
map_path = os.path.join(self.root, 'mapping') |
|
kdata_map = kapture_from_dir(map_path) |
|
assert kdata_map.records_camera is not None and kdata_map.trajectories is not None |
|
kdata_map_searchindex = {kdata_map.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) |
|
for timestamp, sensor_id in kdata_map.records_camera.key_pairs()} |
|
self.map_data = {'path': map_path, 'kdata': kdata_map, 'searchindex': kdata_map_searchindex} |
|
|
|
try: |
|
self.pairs = get_ordered_pairs_from_file(os.path.join(self.root, 'pairfiles/query', pairsfile + '.txt')) |
|
except Exception as e: |
|
|
|
self.pairs = {} |
|
with open(os.path.join(self.root, 'pairfiles/query', pairsfile + '.txt'), 'r') as fid: |
|
lines = fid.readlines() |
|
for line in lines: |
|
splits = line.rstrip("\n\r").split(" ") |
|
self.pairs.setdefault(splits[0].replace('query/', ''), []).append( |
|
(splits[1].replace('database/cutouts/', ''), 1.0) |
|
) |
|
|
|
self.scenes = kdata_query.records_camera.data_list() |
|
|
|
self.aligns_DUC1 = read_alignments(os.path.join(self.root, 'mapping/DUC1_alignment/all_transformations.txt')) |
|
self.aligns_DUC2 = read_alignments(os.path.join(self.root, 'mapping/DUC2_alignment/all_transformations.txt')) |
|
|
|
def __len__(self): |
|
return len(self.scenes) |
|
|
|
def __getitem__(self, idx): |
|
assert self.maxdim is not None and self.patch_size is not None |
|
query_image = self.scenes[idx] |
|
map_images = [p[0] for p in self.pairs[query_image][:self.topk]] |
|
views = [] |
|
dataarray = [(query_image, self.query_data, False)] + [(map_image, self.map_data, True) |
|
for map_image in map_images] |
|
for idx, (imgname, data, should_load_depth) in enumerate(dataarray): |
|
imgpath, kdata, searchindex = map(data.get, ['path', 'kdata', 'searchindex']) |
|
|
|
timestamp, camera_id = searchindex[imgname] |
|
|
|
|
|
camera_params = kdata.sensors[camera_id].camera_params |
|
W, H, f, cx, cy = camera_params |
|
distortion = [0, 0, 0, 0] |
|
intrinsics = np.float32([(f, 0, cx), |
|
(0, f, cy), |
|
(0, 0, 1)]) |
|
|
|
if kdata.trajectories is not None and (timestamp, camera_id) in kdata.trajectories: |
|
cam_to_world = cam_to_world_from_kapture(kdata, timestamp, camera_id) |
|
else: |
|
cam_to_world = np.eye(4, dtype=np.float32) |
|
|
|
|
|
rgb_image = PIL.Image.open(os.path.join(imgpath, 'sensors/records_data', imgname)).convert('RGB') |
|
rgb_image.load() |
|
|
|
W, H = rgb_image.size |
|
resize_func, to_resize, to_orig = get_resize_function(self.maxdim, self.patch_size, H, W) |
|
|
|
rgb_tensor = resize_func(ImgNorm(rgb_image)) |
|
|
|
view = { |
|
'intrinsics': intrinsics, |
|
'distortion': distortion, |
|
'cam_to_world': cam_to_world, |
|
'rgb': rgb_image, |
|
'rgb_rescaled': rgb_tensor, |
|
'to_orig': to_orig, |
|
'idx': idx, |
|
'image_name': imgname |
|
} |
|
|
|
|
|
if should_load_depth: |
|
depthmap_filename = os.path.join(imgpath, 'sensors/records_data', imgname + '.mat') |
|
depthmap = scipy.io.loadmat(depthmap_filename) |
|
|
|
pt3d_cut = depthmap['XYZcut'] |
|
scene_id = imgname.replace('\\', '/').split('/')[1] |
|
if imgname.startswith('DUC1'): |
|
pts3d_full = geotrf(self.aligns_DUC1[scene_id], pt3d_cut) |
|
else: |
|
pts3d_full = geotrf(self.aligns_DUC2[scene_id], pt3d_cut) |
|
|
|
pts3d_valid = np.isfinite(pts3d_full.sum(axis=-1)) |
|
|
|
pts3d = pts3d_full[pts3d_valid] |
|
pts2d_int = xy_grid(W, H)[pts3d_valid] |
|
pts2d = pts2d_int.astype(np.float64) |
|
|
|
|
|
pts3d_full[~pts3d_valid] = np.nan |
|
pts3d_full = torch.from_numpy(pts3d_full) |
|
view['pts3d'] = pts3d_full |
|
view["valid"] = pts3d_full.sum(dim=-1).isfinite() |
|
|
|
HR, WR = rgb_tensor.shape[1:] |
|
_, _, pts3d_rescaled, valid_rescaled = rescale_points3d(pts2d, pts3d, to_resize, HR, WR) |
|
pts3d_rescaled = torch.from_numpy(pts3d_rescaled) |
|
valid_rescaled = torch.from_numpy(valid_rescaled) |
|
view['pts3d_rescaled'] = pts3d_rescaled |
|
view["valid_rescaled"] = valid_rescaled |
|
views.append(view) |
|
return views |
|
|