Spaces:
Runtime error
Runtime error
Update serve/builder.py
Browse files- serve/builder.py +6 -6
serve/builder.py
CHANGED
|
@@ -37,8 +37,8 @@ def load_pretrained_model(model_path, model_base, model_name, model_type, load_8
|
|
| 37 |
|
| 38 |
print('Loading nanoLLaVA from base model...')
|
| 39 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
| 40 |
-
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
| 41 |
-
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained,
|
| 42 |
**kwargs)
|
| 43 |
|
| 44 |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
|
@@ -82,8 +82,8 @@ def load_pretrained_model(model_path, model_base, model_name, model_type, load_8
|
|
| 82 |
|
| 83 |
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
| 84 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
| 85 |
-
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
| 86 |
-
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained,
|
| 87 |
**kwargs)
|
| 88 |
|
| 89 |
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
|
@@ -91,8 +91,8 @@ def load_pretrained_model(model_path, model_base, model_name, model_type, load_8
|
|
| 91 |
model.load_state_dict(mm_projector_weights, strict=False)
|
| 92 |
else:
|
| 93 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
| 94 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
| 95 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
| 96 |
|
| 97 |
model.resize_token_embeddings(len(tokenizer))
|
| 98 |
|
|
|
|
| 37 |
|
| 38 |
print('Loading nanoLLaVA from base model...')
|
| 39 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True, trust_remote_code=True)
|
| 41 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, trust_remote_code=True,
|
| 42 |
**kwargs)
|
| 43 |
|
| 44 |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
|
|
|
| 82 |
|
| 83 |
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
| 84 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
| 85 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True, trust_remote_code=True)
|
| 86 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, trust_remote_code=True,
|
| 87 |
**kwargs)
|
| 88 |
|
| 89 |
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
|
|
|
| 91 |
model.load_state_dict(mm_projector_weights, strict=False)
|
| 92 |
else:
|
| 93 |
if model_type == 'qwen1.5-1.8b' or model_type == 'qwen1.5-0.5b':
|
| 94 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=True)
|
| 95 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
|
| 96 |
|
| 97 |
model.resize_token_embeddings(len(tokenizer))
|
| 98 |
|