Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -10,7 +10,7 @@ import spaces 
     | 
|
| 10 | 
         
             
            import subprocess
         
     | 
| 11 | 
         
             
            subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
         
     | 
| 12 | 
         | 
| 13 | 
         
            -
             
     | 
| 14 | 
         | 
| 15 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 16 | 
         
             
                'qnguyen3/nanoLLaVA',
         
     | 
| 
         @@ -38,7 +38,8 @@ class KeywordsStoppingCriteria(StoppingCriteria): 
     | 
|
| 38 | 
         
             
                        self.keyword_ids.append(torch.tensor(cur_keyword_ids))
         
     | 
| 39 | 
         
             
                    self.tokenizer = tokenizer
         
     | 
| 40 | 
         
             
                    self.start_len = input_ids.shape[1]
         
     | 
| 41 | 
         
            -
             
     | 
| 
         | 
|
| 42 | 
         
             
                def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
         
     | 
| 43 | 
         
             
                    offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
         
     | 
| 44 | 
         
             
                    self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
         
     | 
| 
         @@ -51,7 +52,8 @@ class KeywordsStoppingCriteria(StoppingCriteria): 
     | 
|
| 51 | 
         
             
                        if keyword in outputs:
         
     | 
| 52 | 
         
             
                            return True
         
     | 
| 53 | 
         
             
                    return False
         
     | 
| 54 | 
         
            -
             
     | 
| 
         | 
|
| 55 | 
         
             
                def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
         
     | 
| 56 | 
         
             
                    outputs = []
         
     | 
| 57 | 
         
             
                    for i in range(output_ids.shape[0]):
         
     | 
| 
         | 
|
| 10 | 
         
             
            import subprocess
         
     | 
| 11 | 
         
             
            subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
         
     | 
| 12 | 
         | 
| 13 | 
         
            +
            torch.set_default_device('cuda')
         
     | 
| 14 | 
         | 
| 15 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 16 | 
         
             
                'qnguyen3/nanoLLaVA',
         
     | 
| 
         | 
|
| 38 | 
         
             
                        self.keyword_ids.append(torch.tensor(cur_keyword_ids))
         
     | 
| 39 | 
         
             
                    self.tokenizer = tokenizer
         
     | 
| 40 | 
         
             
                    self.start_len = input_ids.shape[1]
         
     | 
| 41 | 
         
            +
                    
         
     | 
| 42 | 
         
            +
                @spaces.GPU
         
     | 
| 43 | 
         
             
                def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
         
     | 
| 44 | 
         
             
                    offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
         
     | 
| 45 | 
         
             
                    self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
         
     | 
| 
         | 
|
| 52 | 
         
             
                        if keyword in outputs:
         
     | 
| 53 | 
         
             
                            return True
         
     | 
| 54 | 
         
             
                    return False
         
     | 
| 55 | 
         
            +
                    
         
     | 
| 56 | 
         
            +
                @spaces.GPU
         
     | 
| 57 | 
         
             
                def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
         
     | 
| 58 | 
         
             
                    outputs = []
         
     | 
| 59 | 
         
             
                    for i in range(output_ids.shape[0]):
         
     |