import gradio as gr from transformers import CLIPModel, CLIPProcessor from PIL import Image # Step 1: Load Fine-Tuned Model from Hugging Face Model Hub model_name = "quadranttechnologies/retail-content-safety-clip-finetuned" print("Initializing the application...") try: print("Loading the model from Hugging Face Model Hub...") model = CLIPModel.from_pretrained(model_name, trust_remote_code=True) processor = CLIPProcessor.from_pretrained(model_name) print("Model and processor loaded successfully.") except Exception as e: print(f"Error loading the model or processor: {e}") raise RuntimeError(f"Failed to load model: {e}") # Step 2: Define the Inference Function def classify_image(image): """ Classify an image as 'safe' or 'unsafe' and return probabilities. """ try: if image is None: raise ValueError("No image provided. Please upload a valid image.") # Define categories categories = ["safe", "unsafe"] # Process the image inputs = processor(text=categories, images=image, return_tensors="pt", padding=True) # Run inference outputs = model(**inputs) # Extract logits logits_per_image = outputs.logits_per_image # Shape: [1, 2] print(f"Logits: {logits_per_image}") # Apply softmax to logits to get probabilities probs = logits_per_image.softmax(dim=1) # Shape: [1, 2] print(f"Softmax probabilities: {probs}") # Extract probabilities for each category safe_prob = probs[0][0].item() # Extract 'safe' probability unsafe_prob = probs[0][1].item() # Extract 'unsafe' probability print(f"Safe probability: {safe_prob}, Unsafe probability: {unsafe_prob}") # Normalize probabilities to ensure they sum to 100% total_prob = safe_prob + unsafe_prob print(f"Total probability before normalization: {total_prob}") safe_percentage = (safe_prob / total_prob) * 100 unsafe_percentage = (unsafe_prob / total_prob) * 100 # Ensure the sum is exactly 100% print(f"Normalized percentages: Safe={safe_percentage}%, Unsafe={unsafe_percentage}%") return { "safe": round(safe_percentage, 2), # Rounded to 2 decimal places "unsafe": round(unsafe_percentage, 2) } except Exception as e: return {"Error": str(e)} # Step 3: Set Up Gradio Interface iface = gr.Interface( fn=classify_image, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=2), # Use gr.Label to display probabilities with a bar-style visualization title="Content Safety Classification", description="Upload an image to classify it as 'safe' or 'unsafe' with corresponding probabilities.", ) # Step 4: Launch Gradio Interface if __name__ == "__main__": print("Launching the Gradio interface...") iface.launch()