Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from model.deep_lab_model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d | |
class Decoder(nn.Module): | |
def __init__(self, num_classes, backbone, BatchNorm): | |
super(Decoder, self).__init__() | |
if backbone == 'resnet' or backbone == 'drn': | |
low_level_inplanes = 256 | |
elif backbone == 'xception': | |
low_level_inplanes = 128 | |
elif backbone == 'mobilenet': | |
low_level_inplanes = 24 | |
else: | |
raise NotImplementedError | |
self.conv1 = nn.Conv2d(low_level_inplanes, 48, 1, bias=False) | |
self.bn1 = BatchNorm(48) | |
self.relu = nn.ReLU() | |
self.last_conv = nn.Sequential(nn.Conv2d(304, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
BatchNorm(256), | |
nn.ReLU(), | |
nn.Dropout(0.5), | |
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False), | |
BatchNorm(256), | |
nn.ReLU(), | |
nn.Dropout(0.1), | |
nn.Conv2d(256, num_classes, kernel_size=1, stride=1), | |
nn.Sigmoid() | |
) | |
self._init_weight() | |
def forward(self, x, low_level_feat): | |
low_level_feat = self.conv1(low_level_feat) | |
low_level_feat = self.bn1(low_level_feat) | |
low_level_feat = self.relu(low_level_feat) | |
x = F.interpolate(x, size=low_level_feat.size()[2:], mode='bilinear', align_corners=True) | |
x = torch.cat((x, low_level_feat), dim=1) | |
x = self.last_conv(x) | |
return x | |
def _init_weight(self): | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
torch.nn.init.kaiming_normal_(m.weight) | |
elif isinstance(m, SynchronizedBatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def build_decoder(num_classes, backbone, BatchNorm): | |
return Decoder(num_classes, backbone, BatchNorm) |