import torch.nn as nn import math import torch.utils.model_zoo as model_zoo from model.deep_lab_model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d webroot = 'http://dl.yf.io/drn/' model_urls = { 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'drn-c-26': webroot + 'drn_c_26-ddedf421.pth', 'drn-c-42': webroot + 'drn_c_42-9d336e8c.pth', 'drn-c-58': webroot + 'drn_c_58-0a53a92c.pth', 'drn-d-22': webroot + 'drn_d_22-4bd2f8ea.pth', 'drn-d-38': webroot + 'drn_d_38-eebb45f0.pth', 'drn-d-54': webroot + 'drn_d_54-0e0534ff.pth', 'drn-d-105': webroot + 'drn_d_105-12b40979.pth' } def conv3x3(in_planes, out_planes, stride=1, padding=1, dilation=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, bias=False, dilation=dilation) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=(1, 1), residual=True, BatchNorm=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride, padding=dilation[0], dilation=dilation[0]) self.bn1 = BatchNorm(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, padding=dilation[1], dilation=dilation[1]) self.bn2 = BatchNorm(planes) self.downsample = downsample self.stride = stride self.residual = residual def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) if self.residual: out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=(1, 1), residual=True, BatchNorm=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=dilation[1], bias=False, dilation=dilation[1]) self.bn2 = BatchNorm(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class DRN(nn.Module): def __init__(self, block, layers, arch='D', channels=(16, 32, 64, 128, 256, 512, 512, 512), BatchNorm=None): super(DRN, self).__init__() self.inplanes = channels[0] self.out_dim = channels[-1] self.arch = arch if arch == 'C': self.conv1 = nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3, bias=False) self.bn1 = BatchNorm(channels[0]) self.relu = nn.ReLU(inplace=True) self.layer1 = self._make_layer( BasicBlock, channels[0], layers[0], stride=1, BatchNorm=BatchNorm) self.layer2 = self._make_layer( BasicBlock, channels[1], layers[1], stride=2, BatchNorm=BatchNorm) elif arch == 'D': self.layer0 = nn.Sequential( nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3, bias=False), BatchNorm(channels[0]), nn.ReLU(inplace=True) ) self.layer1 = self._make_conv_layers( channels[0], layers[0], stride=1, BatchNorm=BatchNorm) self.layer2 = self._make_conv_layers( channels[1], layers[1], stride=2, BatchNorm=BatchNorm) self.layer3 = self._make_layer(block, channels[2], layers[2], stride=2, BatchNorm=BatchNorm) self.layer4 = self._make_layer(block, channels[3], layers[3], stride=2, BatchNorm=BatchNorm) self.layer5 = self._make_layer(block, channels[4], layers[4], dilation=2, new_level=False, BatchNorm=BatchNorm) self.layer6 = None if layers[5] == 0 else \ self._make_layer(block, channels[5], layers[5], dilation=4, new_level=False, BatchNorm=BatchNorm) if arch == 'C': self.layer7 = None if layers[6] == 0 else \ self._make_layer(BasicBlock, channels[6], layers[6], dilation=2, new_level=False, residual=False, BatchNorm=BatchNorm) self.layer8 = None if layers[7] == 0 else \ self._make_layer(BasicBlock, channels[7], layers[7], dilation=1, new_level=False, residual=False, BatchNorm=BatchNorm) elif arch == 'D': self.layer7 = None if layers[6] == 0 else \ self._make_conv_layers(channels[6], layers[6], dilation=2, BatchNorm=BatchNorm) self.layer8 = None if layers[7] == 0 else \ self._make_conv_layers(channels[7], layers[7], dilation=1, BatchNorm=BatchNorm) self._init_weight() def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, SynchronizedBatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, dilation=1, new_level=True, residual=True, BatchNorm=None): assert dilation == 1 or dilation % 2 == 0 downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm(planes * block.expansion), ) layers = list() layers.append(block( self.inplanes, planes, stride, downsample, dilation=(1, 1) if dilation == 1 else ( dilation // 2 if new_level else dilation, dilation), residual=residual, BatchNorm=BatchNorm)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, residual=residual, dilation=(dilation, dilation), BatchNorm=BatchNorm)) return nn.Sequential(*layers) def _make_conv_layers(self, channels, convs, stride=1, dilation=1, BatchNorm=None): modules = [] for i in range(convs): modules.extend([ nn.Conv2d(self.inplanes, channels, kernel_size=3, stride=stride if i == 0 else 1, padding=dilation, bias=False, dilation=dilation), BatchNorm(channels), nn.ReLU(inplace=True)]) self.inplanes = channels return nn.Sequential(*modules) def forward(self, x): if self.arch == 'C': x = self.conv1(x) x = self.bn1(x) x = self.relu(x) elif self.arch == 'D': x = self.layer0(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) low_level_feat = x x = self.layer4(x) x = self.layer5(x) if self.layer6 is not None: x = self.layer6(x) if self.layer7 is not None: x = self.layer7(x) if self.layer8 is not None: x = self.layer8(x) return x, low_level_feat class DRN_A(nn.Module): def __init__(self, block, layers, BatchNorm=None): self.inplanes = 64 super(DRN_A, self).__init__() self.out_dim = 512 * block.expansion self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = BatchNorm(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], BatchNorm=BatchNorm) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, BatchNorm=BatchNorm) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2, BatchNorm=BatchNorm) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4, BatchNorm=BatchNorm) self._init_weight() def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, SynchronizedBatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, BatchNorm=BatchNorm)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=(dilation, dilation, ), BatchNorm=BatchNorm)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def drn_a_50(BatchNorm, pretrained=True): model = DRN_A(Bottleneck, [3, 4, 6, 3], BatchNorm=BatchNorm) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def drn_c_26(BatchNorm, pretrained=True): model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='C', BatchNorm=BatchNorm) if pretrained: pretrained = model_zoo.load_url(model_urls['drn-c-26']) del pretrained['fc.weight'] del pretrained['fc.bias'] model.load_state_dict(pretrained) return model def drn_c_42(BatchNorm, pretrained=True): model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', BatchNorm=BatchNorm) if pretrained: pretrained = model_zoo.load_url(model_urls['drn-c-42']) del pretrained['fc.weight'] del pretrained['fc.bias'] model.load_state_dict(pretrained) return model def drn_c_58(BatchNorm, pretrained=True): model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', BatchNorm=BatchNorm) if pretrained: pretrained = model_zoo.load_url(model_urls['drn-c-58']) del pretrained['fc.weight'] del pretrained['fc.bias'] model.load_state_dict(pretrained) return model def drn_d_22(BatchNorm, pretrained=True): model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='D', BatchNorm=BatchNorm) if pretrained: pretrained = model_zoo.load_url(model_urls['drn-d-22']) del pretrained['fc.weight'] del pretrained['fc.bias'] model.load_state_dict(pretrained) return model def drn_d_24(BatchNorm, pretrained=True): model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 2, 2], arch='D', BatchNorm=BatchNorm) if pretrained: pretrained = model_zoo.load_url(model_urls['drn-d-24']) del pretrained['fc.weight'] del pretrained['fc.bias'] model.load_state_dict(pretrained) return model def drn_d_38(BatchNorm, pretrained=True): model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', BatchNorm=BatchNorm) if pretrained: pretrained = model_zoo.load_url(model_urls['drn-d-38']) del pretrained['fc.weight'] del pretrained['fc.bias'] model.load_state_dict(pretrained) return model def drn_d_40(BatchNorm, pretrained=True): model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 2, 2], arch='D', BatchNorm=BatchNorm) if pretrained: pretrained = model_zoo.load_url(model_urls['drn-d-40']) del pretrained['fc.weight'] del pretrained['fc.bias'] model.load_state_dict(pretrained) return model def drn_d_54(BatchNorm, pretrained=True): model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', BatchNorm=BatchNorm) if pretrained: pretrained = model_zoo.load_url(model_urls['drn-d-54']) del pretrained['fc.weight'] del pretrained['fc.bias'] model.load_state_dict(pretrained) return model def drn_d_105(BatchNorm, pretrained=True): model = DRN(Bottleneck, [1, 1, 3, 4, 23, 3, 1, 1], arch='D', BatchNorm=BatchNorm) if pretrained: pretrained = model_zoo.load_url(model_urls['drn-d-105']) del pretrained['fc.weight'] del pretrained['fc.bias'] model.load_state_dict(pretrained) return model if __name__ == "__main__": import torch model = drn_a_50(BatchNorm=nn.BatchNorm2d, pretrained=True) input = torch.rand(1, 3, 512, 512) output, low_level_feat = model(input) print(output.size()) print(low_level_feat.size())